Introduction to GPU programming using CUDA

Sahid Pantaleo Experimental Physics Department, CERN

felice@cern.ch

Content of the theoretical session

- Heterogeneous Parallel computing systems
- CUDA Basics
- Parallel constructs in CUDA
- Shared Memory
- Device Management

Content of the tutorial session

- Write and launch CUDA C/C++ kernels
- Manage GPU memory
- Manage communication and synchronization
- ...Think parallel

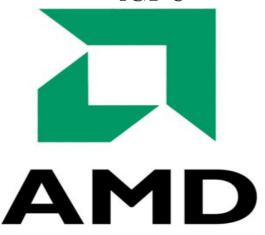
Accelerators

- Exceptional raw power wrt CPUs
- Higher energy efficiency
- Plug & Accelerate
- Massively parallel architecture
- Low Memory/core

Accelerators

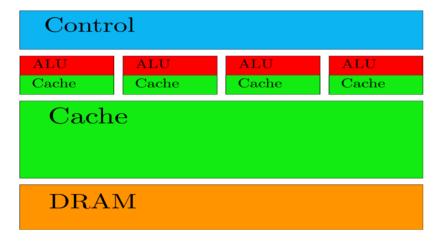
- GPUs were traditionally used for real-time rendering.

 NVIDIA & AMD main manufacturers.
- Intel introduced the coprocessor Xeon Phi (MIC, KNL), then retired it.
 - Announced a new discrete GPU Arc based on the scaling of the iGPU





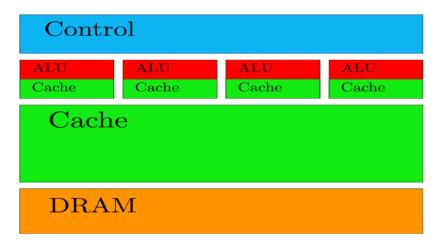
CPU vs GPU architectures



CPU

GPU

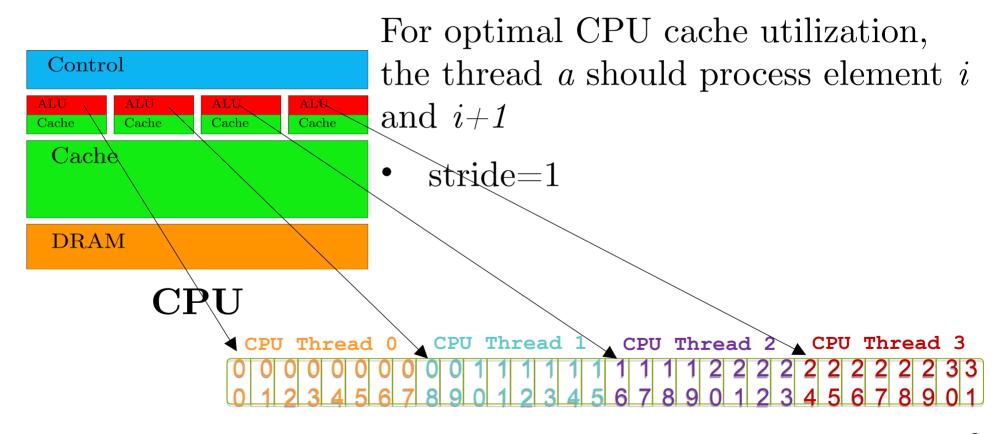
CPU vs GPU architectures



CPU

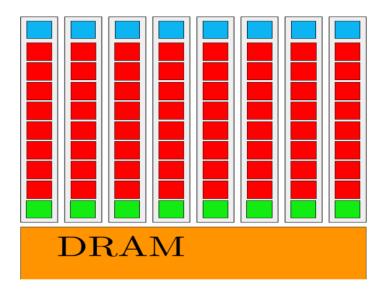
- Large caches (slow memory accesses to quick cache accesses)
- SIMD
- Branch prediction
- Data forwarding
- Powerful ALU
- Pipelining

Memory access patterns: cached



CPU vs GPU architectures

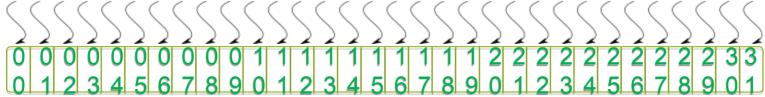
- SM executes kernels (aka functions) using hundreds of threads concurrently.
- SIMT (Single-Instruction, Multiple-Thread)
- Instructions pipelined
- Thread-level parallelism
- Instructions issued in order
- No Branch prediction
- Branch predication
- Cost ranging from few hundreds to few thousand euros depending on features



GPU

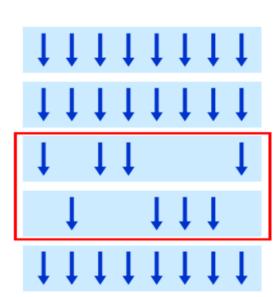
Inside a GPU SM: coalesced

- L1 data cache shared among ALUs
- ALUs work in SIMD mode in groups of 32 (warps)
- If a *load* is issued by each thread, they have to wait for all the loads in the same warp to complete before the next instruction can execute
- Coalesced memory access pattern optimal for GPUs: thread a should process element i, thread a+1 the element and i+1
 - Lose an order of magnitude in performance if cached access pattern used on GPU



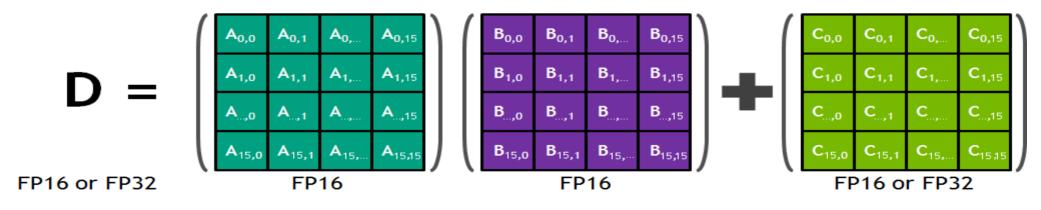
Warps

- Once a block is assigned to an SM, it is divided into units called warps.
- Thread IDs within a warp are consecutive and increasing
- Threads within a warp are executed in a SIMD fashion
- If an operand is not ready the warp will stall
- Context switch between warps when stalled
- Context switch must be very fast



Tensor cores

- NVIDIA TPUs integrated on the GPU
- Fast half precision multiplication and reduction in full precision
- Useful for accelerating NN inference



Throughput

Theoretical peak throughput: the maximum amount of data that a kernel can read and produce in the unit time.

 $Throughput_{peak} (GB/s) = 2 x access width (byte) x mem_freq (GHz)$

This means that if your device comes with a memory clock rate of 1GHz DDR (double data rate) and a 384-bit wide memory interface, the amount of data that a kernel can process and produce in the unit time is at most:

Throughput_{neak} $(GB/s) = 2 \times (384/8)(byte) \times 1 (GHz) = 96GB/s$

Global memory

Volta V100:

- 7.8 TFLOPS DPFP peak throughput
- 900 GB/s peak off-chip memory access bandwidth
- 112 G DPFP operands per second
- To achieve peak throughput, a program must perform 7800/112 = 70 FP arithmetic operations for each operand value fetched from off-chip memory

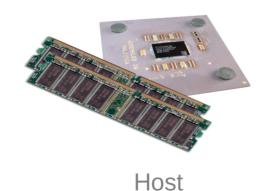
Bandwidth

Bandwidth

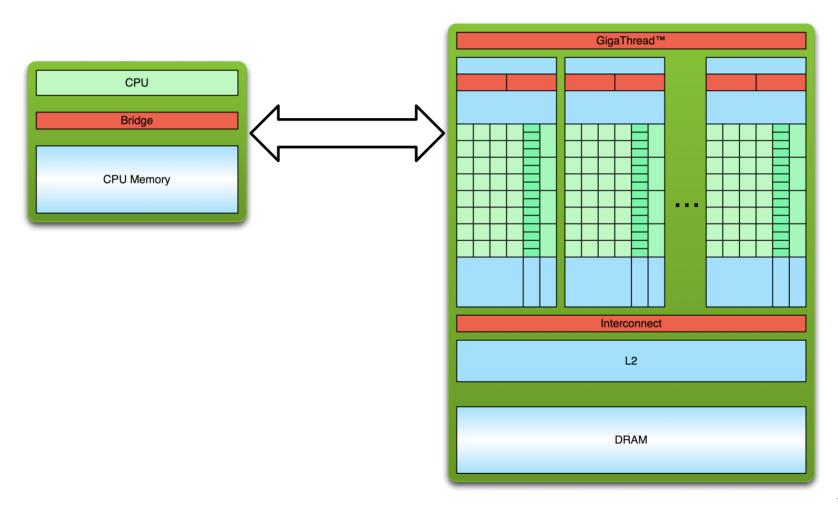
Heterogeneous Parallel Computing Systems

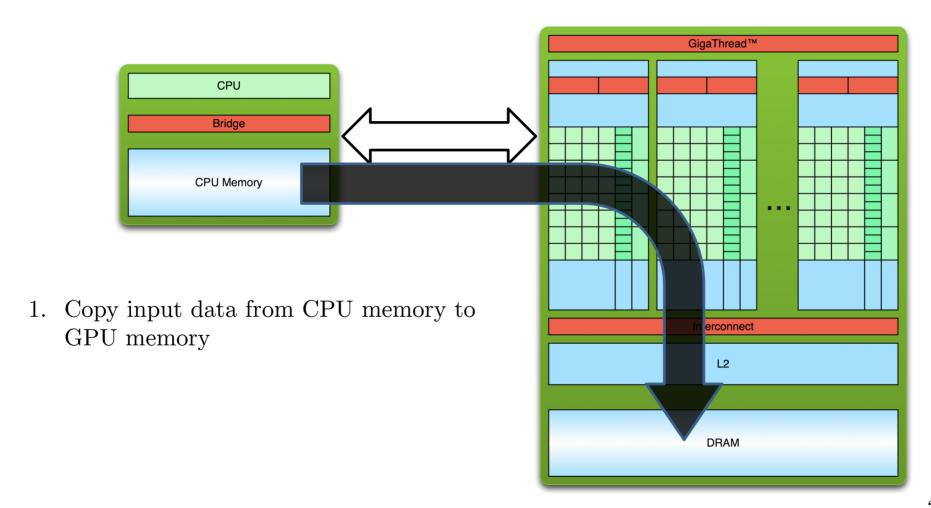
Heterogeneous Computing

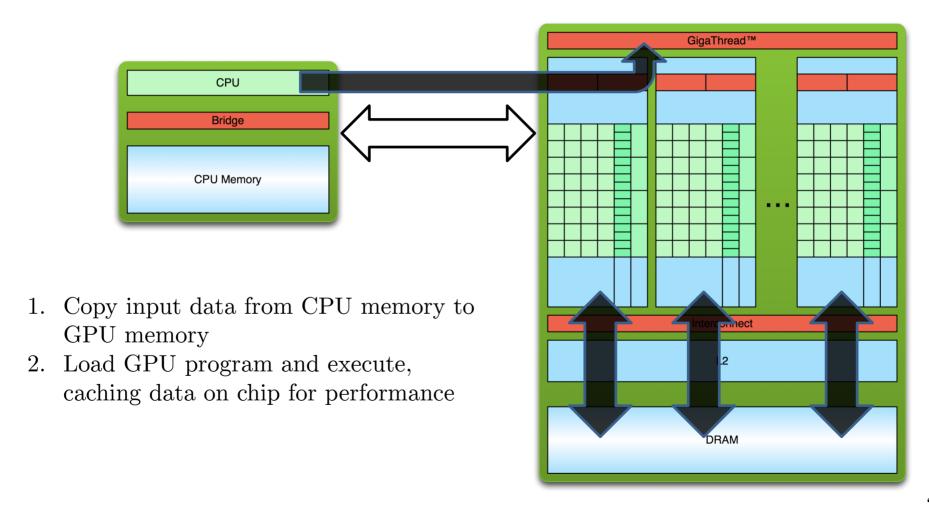
- Terminology
 - Host The CPU and its memory space
 - Device The GPU and its memory space

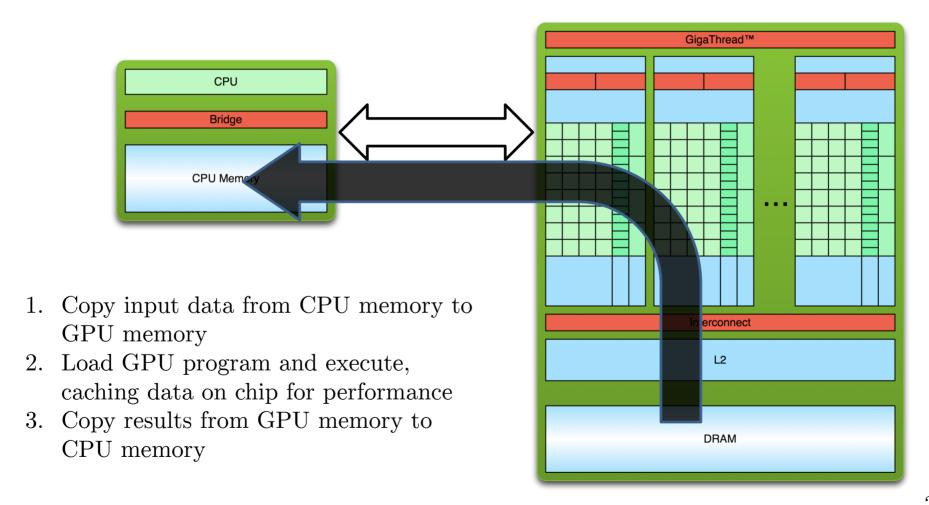


Device









CUDA Basics

What is CUDA?

CUDA C/C++

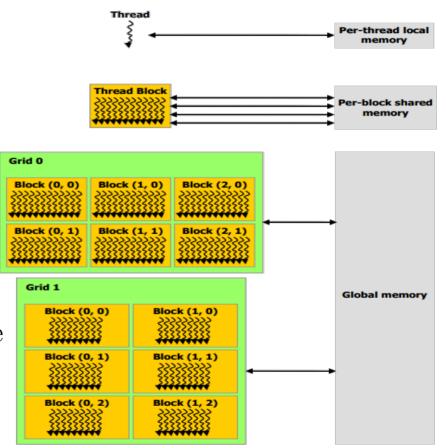
- Based on industry-standard C/C++
- Small set of extensions to enable heterogeneous programming
- Straightforward APIs to manage devices, memory etc.

SPMD Phases

- Initialize
 - Establish localized data structure and communication channels
- Obtain a unique identifier
 - Each thread acquires a unique identifier, typically range from 0 to N-1, where N is the number of threads
- Distribute Data
 - Decompose global data into chunks and localize them, or
 - Sharing/replicating major data structure using thread ID to associate subset of the data to threads
- Run the core computation
- Finalize
 - Reconcile global data structure, prepare for the next major iteration

Memory Hierarchy in CUDA

- Registers/Shared memory:
 - Fast
 - Only accessible by the thread/block
 - Lifetime of the thread/block
- Global memory:
 - Potentially 150x slower than register or shared memory
 - Accessible from either the host or device
 - Lifetime of the application



Hello World!

```
#include <iostream>
int main() {
    std::cout << "Hello World!\n";
}</pre>
```

Hello World!

```
#include <iostream>
int main() {
    std::cout << "Hello World!\n";
}</pre>
```

Standard C++ that runs on the host

• NVIDIA compiler (nvcc) can be used to compile programs with no device code

```
Output:
$ nvcc hello_world.cu
$ ./a.out
Hello World!
$
```

```
#include <iostream>
__global__ void mykernel() {
int main() {
   cudaStream_t stream; cudaStreamCreate(&stream);
   mykernel <<<1,1,0,stream>>>();
   std::cout << "Hello World!\n";</pre>
   return 0;
```

Two new syntactic elements

```
#include <iostream>
__global__ void mykernel() {
int main() {
   cudaStream_t stream; cudaStreamCreate(&stream);
   mykernel <<<1,1,0,stream>>>();
   std::cout << "Hello World!\n";</pre>
   return 0;
```

```
__global__ void mykernel() {
}
```

- CUDA C/C++ keyword __global__ indicates a function that:
 - Runs on the device
 - Is called from host code

- nvcc separates source code into host and device components
 - Device functions (e.g. mykernel()) processed by NVIDIA compiler
 - Host functions (e.g. main()) processed by gcc

mykernel <<<1,1,0,stream>>>();

- Triple angle brackets mark a call from host code to device code
 - Also called a "kernel launch"
 - We'll return to the parameters in a moment

• That's all that is required to execute a function on the GPU!

Compute Capability

- The compute capability of a device describes its architecture, e.g.
 - Number of registers
 - Sizes of memories
 - Features & capabilities
- By running the application deviceQuery in the practical part you will be able to know useful information like
 - The maximum number of threads per block
 - The amount of shared memory
 - The frequency of the memory
- The compute capability is given as a major.minor version number (i.e. Pascal: 6.0, Volta: 7.0, Ampere: 8, Hopper: 9)

CUDA Binary

PTX 8.0
SASS 8.0
SASS 7.0
CPU code

- Exact match of SASS runs natively
 - Many copies of SASS may exist in one fat binary
 - This binary will just work on Ampere (8) and Volta (7)
- When running on a GPU for which SASS does not exist in the binary, CUDA PTX compiler recompiles for the new GPUs
 - Forward compatibility guaranteed by JIT compilation of PTX to future compute capabilities

Coordinating Host & Device

- Kernel launches are asynchronous
 - control is returned to the host thread before the device has completed the requested task
 - CPU needs to synchronize before consuming the results

cudaMemcpy()	Blocks the CPU until the copy is complete Copy begins when all preceding CUDA calls have completed
<pre>cudaMemcpyAsync()</pre>	Asynchronous, does not block the CPU
<pre>cudaDeviceSynchronize()</pre>	Blocks the CPU until all preceding CUDA calls have completed

Pinned memory

- Pinned memory is a main memory area that is not pageable by the operating system
- Ensures faster transfers (the DMA engine can work without CPU intervention)
- The only way to get closer to PCI peak bandwidth
- Allows CUDA asynchronous operations to work correctly

```
// allocate pinned memory
cudaMallocHost(&area, sizeof(double) * N);
// free pinned memory
cudaFreeHost(area);
```

Asynchronous GPU Operations: CUDA Streams

- A stream is a FIFO command queue;
 - Kernel launches and memory copies that do not specify any stream (or set the stream to zero) are issued to the default stream.
- A stream is independent to every other active stream;

```
int N = 10000; auto memSize = N*sizeof(float);
cudaStream t stream:
cudaStreamCreate(&stream):
float* hPtr; float* dPtr;
cudaMallocHost(&hPtr, memSize);
cudaMallocAsync(&dPtr,memSize, stream);
cudaMemcpyAsync(dPtr, hPtr, memSize, cudaMemcpyHostToDevice, stream);
kernel <<< 100,512,0, stream >>> (dPtr);
cudaMemcpyAsync(hResults, dPtr ,memSize, cudaMemcpyDeviceToHost, stream);
cudaFreeAsync(dPtr, stream);
cudaStreamSynchronize(stream);
cudaStreamDestroy(&stream); // if the stream is not needed any longer
```

CUDA streams enable concurrency

Simultaneous support:

- CUDA kernels on GPU
- 2 cudaMemcpyAsync (in opposite directions)
- Computation on the CPU
- Requirements for Concurrency:
 - CUDA operations must be in different, non-0, streams
 - cudaMemcpyAsync with host from 'pinned' memory

CUDA Streams

```
H<sub>2</sub>D
                                                                                  K
                                                                                       D2H
                                                 stream 1
std::vector<cudaStream t> streams(4);
                                                                                         K
                                                 stream 2
                                                                                H<sub>2</sub>D
                                                                                              D2H
                                                 stream 3
                                                                                       H<sub>2</sub>D
for (auto& s: streams) cudaStreamCreate(&s):
std::vector<float*> hPtrs(4); std::vector<float*> dPtrs(4);
for (int i=0; i<4; ++i) cudaMallocHost(&hPtrs[i],memSize);</pre>
for (int i=0: i<4: ++i) {
    cudaMallocAsync(&dPtrs[i],memSize, streams[i]);
    cudaMemcpyAsync(dPtrs[i],hPtrs[i],memSize, cudaMemcpyHostToDevice, streams[i]);
    kernelA<<<100,512,0,streams[i]>>>(dPtrs[i]);
    kernelB<<<100,512,0,streams[i]>>>(dPtrs[i]);
    cudaMemcpyAsync(hResults[i],dPtrs[i],memSize, cudaMemcpyDeviceToHost, streams[i]);
}
for (auto& s: streams) {
    cudaStreamSynchronize(s);
    cudaStreamDestroy(&s); // if the stream is not needed any longer
```

stream 0

H₂D

K

D₂H

K

D2H

Device synchronization

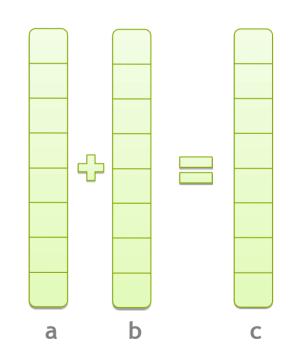
Explicit Synchronization:

- cudaDeviceSynchronize()
 - blocks host until all issued CUDA calls are complete
- cudaStreamSynchronize(stream)
 - blocks host until all CUDA calls in streamid are complete
- cudaStreamWaitEvent(stream, event)
 - all commands added to the stream delay their execution until the event has completed

Parallel constructs in CUDA

Parallel Programming in CUDA

• We'll start by adding two integers and build up to vector addition



Addition on the Device

• A simple kernel to add two integers

```
__global__ void add(const int *a, const int *b, int *c) {
    *c = *a + *b;
}
```

- As before __global__ is a CUDA C/C++ keyword meaning
 - add() will execute on the device
 - add() will be called from the host

Addition on the Device

• Note that we use pointers for the variables

```
__global__ void add(const int *a, const int *b, int *c) {
    *c = *a + *b;
}
```

• add() runs on the device, so a, b and c must point to device memory

• We need to allocate memory on the GPU

Memory Management

- Host and device memory are separate entities
 - Device pointers point to GPU memory

May be passed to/from host code

May not be dereferenced in host code

- Host pointers point to CPU memory

May be passed to/from device code

May not be dereferenced in device code

- Simple CUDA API for handling device memory
 - cudaMalloc(), cudaFree(), cudaMemcpy()
 - Similar to the C equivalents malloc(), free(), memcpy()

Addition on the Device: add()

• Returning to our add() kernel

```
__global__ void add(const int *a, const int *b, int *c) {
    *c = *a + *b;
}
```

• Let's take a look at main()...

Addition on the Device: main()

```
int main() {
   cudaStream t stream;
   cudaStreamCreate(&stream);
   int *a, *b, *c; // host copies of a, b, c
   int *d_a, *d_b, *d_c;// device copies of a, b, c
   int size = sizeof(int);
   // Allocate space for device copies of a, b, c
   cudaMallocHost(&a,size);
   cudaMallocHost(&b,size);
   cudaMallocHost(&c,size);
   *a = 2; *b = 7;
```

Addition on the Device: main()

```
cudaMallocAsync(&d_a, size, stream);
 cudaMallocAsync(&d_b, size, stream);
 cudaMallocAsync(&d c, size, stream);
// Copy inputs to device
   cudaMemcpyAsync(d_a, a, size, cudaMemcpyHostToDevice, stream);
   cudaMemcpyAsync(d_b, b, size, cudaMemcpyHostToDevice, stream);
   // Launch add() kernel on GPU
   add<<<1.1.0.stream>>>(d a, d b, d c);
   // Copy result back to host
   cudaMemcpyAsync(c, d_c, size, cudaMemcpyDeviceToHost, stream);
  cudaFreeAsync(d_a,stream); cudaFreeAsync(d_b,stream); cudaFreeAsync(d_c,stream);
  // Synchronize to be able to use c...
   cudaStreamSynchronize(stream);
  cudaStreamDestroy(stream);
  cudaFreeHost(a); cudaFreeHost(b); cudaFreeHost(c);
```

Moving to Parallel

- GPU computing is about massive parallelism
 - So how do we run code in parallel on the device?

```
add<<< 1, 1, 0, stream >>>();
add<<< N, 1, 0, stream >>>();
```

• Instead of executing add() once, execute N times in parallel

Vector Addition on the Device

- With add() running in parallel we can do vector addition
- Terminology: each parallel invocation of add() is referred to as a block
 - The set of blocks is referred to as a grid
 - Each invocation can refer to its block index using blockIdx.x

```
__global__ void add(const int *a, const int *b, int *c) {
   c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
```

• By using blockIdx.x to index into the array, each block handles a different index

Vector Addition on the Device

```
__global__ void add(const int *a, const int *b, int *c) {
   c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• On the device, each block can execute in parallel:

```
Block 0 Block 1 Block 2 Block 3 c[0]= a[0]+b[0]; c[1]= a[1]+b[1]; c[2]= a[2]+b[2]; c[3]= a[3]+b[3];
```

Vector Addition on the Device: add()

• Returning to our parallelized add() kernel

```
__global__ void add(const int *a, const int *b, int *c) {
   c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• Let's take a look at main()...

Vector Addition on the Device: main()

```
int main() {
cudaStream_t stream; cudaStreamCreate(&stream);
int N = 512:
std::vector<int> a, b, c;
a.resize(N); b.resize(N); c.resize(N);
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for host copies of a, b, c and
// setup input values
my_favorite_random_ints(a, N);
my_favorite_random_ints(b, N);
// Alloc memory for device copies of a, b, c
cudaMallocAsync(&d_a, size, stream);
cudaMallocAsync(&d_b, size, stream);
cudaMallocAsync(&d_c, size, stream);
```

Vector Addition on the Device:

```
// Copy inputs to device
cudaMemcpyAsync(d_a, a.data(), size, cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_b, b.data(), size, cudaMemcpyHostToDevice, stream);
// Launch add() kernel on GPU with N blocks
add<<<N, 1, 0, stream>>>(d_a, d_b, d_c);
// Copy result back to host
cudaMemcpyAsync(c.data(), d_c, size, cudaMemcpyDeviceToHost, stream);
// Cleanup
cudaFreeAsync(d_a,stream); cudaFreeAsync(d_b,stream);
   cudaFreeAsync(d_c,stream);
cudaStreamSynchronize(stream);
// Now you can use content of the c vector...
cudaStreamDestroy(stream);
```

CUDA Threads

- Terminology: a block can be split into parallel threads
- Let's change add() to use parallel threads instead of parallel blocks

```
__global__ void add(const int *a, const int *b, int *c) {
    c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
```

- We use threadIdx.x instead of blockIdx.x
- Need to make one change in main()...

Combining Blocks and Threads

- We've seen parallel vector addition using:
 - Many blocks with one thread each
 - One block with many threads

Let's adapt vector addition to use both blocks and threads

Why? We'll come to that...

First let's discuss data indexing...

Indexing Arrays with Blocks and Threads

- No longer as simple as using blockIdx.x and threadIdx.x
 - Consider indexing an array with one element per thread (8 threads/block)

```
threadIdx.x threadIdx.x threadIdx.x threadIdx.x

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3
```

• With blockDim.x threads/block a unique index for each thread is given by:

```
auto index = threadIdx.x + blockIdx.x * blockDim.x;
```

Vector Addition with Blocks and Threads

- Use the built-in variable blockDim.x for threads per block auto index = threadIdx.x + blockIdx.x * blockDim.x;
- Combined version of add() to use parallel threads and parallel blocks

```
__global__ void add(const int *a, const int *b, int *c) {
    auto index = threadIdx.x + blockIdx.x * blockDim.x;
    c[index] = a[index] + b[index];
}
```

What changes need to be made in main()?

Vector Addition on the Device: main()

```
int main() {
 cudaStream_t stream; cudaStreamCreate(&stream);
 int N = 2048*2048;
 int threads_per_block = 512;
 std::vector<int> a, b, c;
 a.resize(N); b.resize(N); c.resize(N);
 int *d_a, *d_b, *d_c; // device copies of a, b, c
 int size = N * sizeof(int);
 // Alloc space for host copies of a, b, c and
 // setup input values
my_favorite_random_ints(a, N);
my_favorite_random_ints(b, N);
 // Alloc memory for device copies of a, b, c
 cudaMallocAsync(&d_a, size, stream);
 cudaMallocAsync(&d_b, size, stream);
 cudaMallocAsync(&d_c, size, stream);
```

Vector Addition on the Device:

```
// Copy inputs to device
cudaMemcpyAsync(d_a, a.data(), size, cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_b, b.data(), size, cudaMemcpyHostToDevice, stream);
// Launch add() kernel on GPU with N blocks
add<<<N/threads_per_block,threads_per_block, 0, stream>>>(d_a, d_b, d_c);
// Copy result back to host
cudaMemcpyAsync(c.data(), d_c, size, cudaMemcpyDeviceToHost, stream);
// Cleanup
cudaFreeAsync(d_a,stream); cudaFreeAsync(d_b,stream);
cudaFreeAsync(d_c,stream);
cudaStreamSynchronize(stream);
// Now you can use content of the c vector...
cudaStreamDestroy(stream);
```

Handling Arbitrary Vector Sizes

- Typical problems are not friendly multiples of blockDim.x
- Avoid accessing beyond the end of the arrays:

```
__global__ void add(const int *a, const int *b, int *c, int n) {
   auto index = threadIdx.x + blockIdx.x * blockDim.x;
   if (index < n)
      c[index] = a[index] + b[index];
}</pre>
```

Update the kernel launch:

```
add << (n + nThPerBlock - 1)/nThPerBlock, nThPerBlock >>> (d_a,d_b, d_c, n);
```

Hardware vs Software

- From a programmer's perspective:
 - Blocks
 - Kernel
 - Threads
 - Grid
- Hardware implementation:
 - Streaming multiprocessors (SM)
 - Warps

CUDA Runtime system

- Threads assigned to execution resources on a block-by-block basis.
- CUDA runtime automatically reduces number of blocks assigned to each SM until resource usage is under limit.
- Runtime system:
 - maintains a list of blocks that need to execute
 - assigns new blocks to SM as they compute previously assigned blocks
- Example of SM resources:
 - threads/block or threads/SM or blocks/SM
 - number of threads that can be simultaneously tracked and scheduled
 - shared memory

Context Switching

- Registers and shared memory are allocated for a block as long as that block is active
- Once a block is active it will stay active until all threads in that block have completed
- Context switching is very fast because registers and shared memory do not need to be saved and restored
- Goal: Have enough transactions in flight to saturate the memory bus
- Latency can be hidden by having more transactions in flight
- Increase active threads or Instruction Level Parallelism (ILP)

Time for exercises!

Shared Memory

Why Bother with Threads?

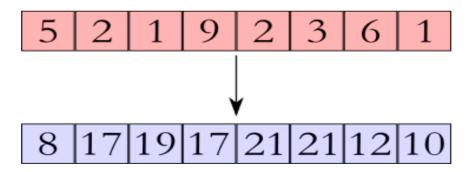
- Threads seem unnecessary
 - They add a level of complexity
 - What do we gain?

- Unlike parallel blocks, threads have mechanisms to:
 - Communicate
 - Synchronize

• To understand the gain, we need a new example...

1D Stencil

- Consider applying a 1D stencil sum to a 1D array of elements
 - Each output element is the sum of input elements within a radius
 - Example of stencil with radius 2:



Sharing Data Between Threads

• Terminology: within a block, threads share data via shared memory

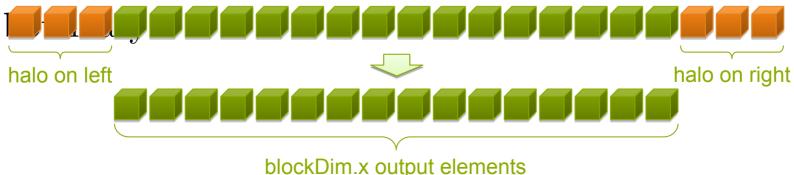
• Extremely fast on-chip memory, user-managed

• Declare using __shared__, allocated per block

• Data is not visible to threads in other blocks

Implementing With Shared Memory

- Cache data in shared memory
 - Read (blockDim.x + 2 * radius) input elements from global memory to shared memory
 - Compute blockDim.x output elements
 - Write blockDim.x output elements to global memory
 - Each block needs a halo of radius elements at each



Stencil Kernel

```
__global__ void stencil_1d(const int *in, int *out) {
```

Stencil Kernel

```
__global__ void stencil_1d(const int *in, int *out) {
   __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
```



```
__global__ void stencil_1d(const int *in, int *out) {
   __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
   auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
   auto s_index = threadIdx.x + RADIUS;
```



```
__global__ void stencil_1d(const int *in, int *out) {
   __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
   auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
   auto s_index = threadIdx.x + RADIUS;

// Read input elements into shared memory
   temp[s_index] = in[g_index];
```

```
__global__ void stencil_1d(const int *in, int *out) {
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
    auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
    auto s_index = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[s_index] = in[g_index];
if (threadIdx.x < RADIUS) {
    temp[s_index - RADIUS] = in[g_index - RADIUS];</pre>
```

```
__global__ void stencil_1d(const int *in, int *out) {
    __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
    auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
    auto s_index = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[s_index] = in[g_index];
if (threadIdx.x < RADIUS) {
    temp[s_index - RADIUS] = in[g_index - RADIUS];
    temp[s_index + BLOCK_SIZE] =</pre>
```

```
__global__ void stencil_1d(const int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
 auto s_index = threadIdx.x + RADIUS;
 // Read input elements into shared memory
 temp[s_index] = in[g_index];
 if (threadIdx.x < RADIUS) {</pre>
   temp[s_index - RADIUS] = in[g_index - RADIUS];
   temp[s_index + BLOCK_SIZE] =
      in[g_index + BLOCK_SIZE];
```

```
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
  result += temp[s_index + offset];

// Store the result
out[g_index] = result;
}</pre>
```

Data Race!

• The stencil example will not work...

__syncthreads()

• void __syncthreads();

- Synchronizes all threads within a block
 - Used to prevent RAW / WAR / WAW hazards

- All threads must reach the barrier
 - In conditional code, the condition must be uniform across the block

```
__global__ void stencil_1d(const int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
 auto s_index = threadIdx.x + RADIUS;
 // Read input elements into shared memory
 temp[s_index] = in[g_index];
 if (threadIdx.x < RADIUS) {</pre>
   temp[s_index - RADIUS] = in[g_index - RADIUS];
   temp[s_index + BLOCK_SIZE] =
     in[g_index + BLOCK_SIZE];
    // Synchronize (ensure all the data is available)
    __syncthreads();
```

```
// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
  result += temp[s_index + offset];

// Store the result
out[g_index] = result;
}</pre>
```

Review (1 of 2)

- Launching parallel threads
 - Launch N blocks with M threads per block with kernel << N, M, O, stream >>> (...);
 - Use blockIdx.x to access block index within grid
 - Use threadIdx.x to access thread index within block

• Allocate elements to threads:

```
auto index = threadIdx.x + blockIdx.x * blockDim.x;
```

Review (2 of 2)

- Use __shared__ to declare a variable/array in shared memory
 - Data is shared between threads in a block
 - Not visible to threads in other blocks

• Use __syncthreads() as a barrier to prevent data hazards

Device Management

Reporting Errors

- All CUDA API calls return an error code (cudaError_t)
 - Error in the API call itself

OR.

- Error in an earlier asynchronous operation (e.g. kernel)
- Get the error code for the last error: cudaError_t cudaGetLastError(void)
- Get a string to describe the error:
 char *cudaGetErrorString(cudaError_t)

```
cudaGetErrorString(cudaGetLastError());
```

Timing

- You can use the standard timing facilities (host side) in an almost standard way...
 - but remember: CUDA calls can be asynchronous!

Timing

- CUDA provides the cudaEvents facility. They grant you access to the GPU timer.
 - Needed to time a single stream without loosing Host/Device concurrency.

```
cudaEvent_t start, stop;
cudaEventCreate(start); cudaEventCreate(stop);
cudaEventRecord(start, stream);
My_kernel<<<blooks, threads, 0, stream>>> ();
cudaEventRecord(stop, stream);
cudaEventSynchronize(stop);
float ElapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);
```