
Introduction to
GPU programming using CUDA

Sahid Pantaleo
Experimental Physics Department, CERN

felice@cern.ch

2

Content of the theoretical session
● Heterogeneous Parallel computing systems
● CUDA Basics
● Parallel constructs in CUDA
● Shared Memory
● Device Management

3

Content of the tutorial session

● Write and launch CUDA C/C++ kernels
● Manage GPU memory
● Manage communication and synchronization
● …Think parallel

4

Accelerators
● Exceptional raw power wrt CPUs
● Higher energy efficiency
● Plug & Accelerate
● Massively parallel architecture
● Low Memory/core

5

Accelerators
● GPUs were traditionally used for real-time rendering.

 NVIDIA & AMD main manufacturers.
● Intel introduced the coprocessor Xeon Phi (MIC, KNL), then

retired it.
– Announced a new discrete GPU Arc based on the scaling of the

iGPU

6

CPU vs GPU architectures

CPU
GPU

7

CPU vs GPU architectures

• Large caches (slow memory accesses
to quick cache accesses)

• SIMD
• Branch prediction
• Data forwarding
• Powerful ALU
• Pipelining

CPU

Memory access patterns: cached
For optimal CPU cache utilization,
the thread a should process element i
and i+1
• stride=1

8

CPU
0
0

0
1

3
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

CPU Thread 0 CPU Thread 1 CPU Thread 2 CPU Thread 3

9

CPU vs GPU architectures
● SM executes kernels (aka functions) using

hundreds of threads concurrently.
● SIMT (Single-Instruction, Multiple-Thread)
● Instructions pipelined
● Thread-level parallelism
● Instructions issued in order
● No Branch prediction
● Branch predication
● Cost ranging from few hundreds to few

thousand euros depending on features

GPU

Inside a GPU SM: coalesced
• L1 data cache shared among ALUs
• ALUs work in SIMD mode in groups of 32 (warps)
• If a load is issued by each thread, they have to wait

for all the loads in the same warp to complete before
the next instruction can execute

• Coalesced memory access pattern optimal for GPUs:
thread a should process element i, thread a+1 the
element and i+1

• Lose an order of magnitude in performance if cached
 access pattern used on GPU

100
0

0
1

3
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

11

Warps

● Once a block is assigned to an SM, it is
divided into units called warps.

● Thread IDs within a warp are consecutive
and increasing

● Threads within a warp are executed in a
SIMD fashion

● If an operand is not ready the warp will
stall

● Context switch between warps when
stalled

● Context switch must be very fast

12

Tensor cores
● NVIDIA TPUs integrated on the GPU
● Fast half precision multiplication and reduction in full
precision

● Useful for accelerating NN inference

13

Throughput
Theoretical peak throughput: the maximum amount of data that a
kernel can read and produce in the unit time.

Throughputpeak (GB/s) = 2 x access width (byte) x mem_freq (GHz)

This means that if your device comes with a memory clock rate of 1GHz
DDR (double data rate) and a 384-bit wide memory interface, the
amount of data that a kernel can process and produce in the unit time is
at most:
Throughputpeak (GB/s) = 2 x (384/8)(byte) x 1 (GHz)= 96GB/s

14

Global memory

Volta V100:
● 7.8 TFLOPS DPFP peak throughput
● 900 GB/s peak off-chip memory access bandwidth
● 112 G DPFP operands per second
● To achieve peak throughput, a program must perform

7800/112 = ~70 FP arithmetic operations for each operand
value fetched from off-chip memory

15

Bandwidth

16

Bandwidth

17

Heterogeneous Parallel Computing Systems

18

Heterogeneous Computing

● Terminology
– Host The CPU and its memory space
– Device The GPU and its memory space

DeviceHost

19

Simple Processing Flow

PCI Bus

20

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

PCI Bus

21

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

PCI Bus

22

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to
CPU memory

PCI Bus

23

CUDA Basics

24

What is CUDA?

CUDA C/C++
– Based on industry-standard C/C++
– Small set of extensions to enable heterogeneous programming
– Straightforward APIs to manage devices, memory etc.

25

SPMD Phases

● Initialize
– Establish localized data structure and communication channels

● Obtain a unique identifier
– Each thread acquires a unique identifier, typically range from 0 to N-1, where N is the number of

threads
● Distribute Data

– Decompose global data into chunks and localize them, or
– Sharing/replicating major data structure using thread ID to associate subset of the data to threads

● Run the core computation
● Finalize

– Reconcile global data structure, prepare for the next major iteration

26

Memory Hierarchy in CUDA
● Registers/Shared memory:

– Fast
– Only accessible by the thread/block
– Lifetime of the thread/block

● Global memory:
– Potentially 150x slower than register or

shared memory
– Accessible from either the host or device
– Lifetime of the application

27

Hello World!

#include <iostream>
int main() {

std::cout << "Hello World!\n";
}

28

Hello World!

Standard C++ that runs on the host
• NVIDIA compiler (nvcc) can be used to compile

programs with no device code
Output:
$ nvcc hello_world.cu
$./a.out
Hello World!
$

#include <iostream>
int main() {

std::cout << "Hello World!\n";
}

29

Hello World! with Device Code

#include <iostream>
__global__ void mykernel() {
}

 int main() {
 cudaStream_t stream; cudaStreamCreate(&stream);

mykernel<<<1,1,0,stream>>>();
std::cout << "Hello World!\n";
return 0;

}

30

Hello World! with Device Code
#include <iostream>
__global__ void mykernel() {
}

 int main() {
 cudaStream_t stream; cudaStreamCreate(&stream);

mykernel<<<1,1,0,stream>>>();
std::cout << "Hello World!\n";
return 0;

}
Two new syntactic elements

31

Hello World! with Device Code

__global__ void mykernel() {
}

● CUDA C/C++ keyword __global__ indicates a function that:
– Runs on the device
– Is called from host code

● nvcc separates source code into host and device components
– Device functions (e.g. mykernel()) processed by NVIDIA compiler
– Host functions (e.g. main()) processed by gcc

32

Hello World! with Device Code

mykernel<<<1,1,0,stream>>>();

● Triple angle brackets mark a call from host code to device
code
– Also called a “kernel launch”
– We’ll return to the parameters in a moment

● That’s all that is required to execute a function on the GPU!

33

Compute Capability
● The compute capability of a device describes its architecture, e.g.

– Number of registers
– Sizes of memories
– Features & capabilities

● By running the application deviceQuery in the practical part you will
be able to know useful information like
– The maximum number of threads per block
– The amount of shared memory
– The frequency of the memory

● The compute capability is given as a major.minor version number (i.e:
Pascal: 6.0, Volta: 7.0, Ampere: 8, Hopper: 9)

34

CUDA Binary
● Exact match of SASS runs natively

– Many copies of SASS may exist in one fat binary
– This binary will just work on Ampere (8) and

Volta (7)
● When running on a GPU for which SASS does

not exist in the binary, CUDA PTX compiler
recompiles for the new GPUs
– Forward compatibility guaranteed by JIT

compilation of PTX to future compute capabilities

35

Coordinating Host & Device

● Kernel launches are asynchronous
– control is returned to the host thread before the device has

completed the requested task
– CPU needs to synchronize before consuming the results

cudaMemcpy() Blocks the CPU until the copy is complete
Copy begins when all preceding CUDA calls have
completed

cudaMemcpyAsync() Asynchronous, does not block the CPU
cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have

completed

36

Pinned memory
● Pinned memory is a main memory area that is not pageable by the

operating system
● Ensures faster transfers (the DMA engine can work without CPU

intervention)
● The only way to get closer to PCI peak bandwidth
● Allows CUDA asynchronous operations to work correctly

// allocate pinned memory
cudaMallocHost(&area, sizeof(double) * N);
// free pinned memory
cudaFreeHost(area);

37

Asynchronous GPU Operations: CUDA Streams
● A stream is a FIFO command queue;

– Kernel launches and memory copies that do not specify any stream (or set the stream to zero) are issued to the default stream.

● A stream is independent to every other active stream;

int N = 10000; auto memSize = N*sizeof(float);

cudaStream_t stream;

cudaStreamCreate(&stream);

float* hPtr; float* dPtr;

cudaMallocHost(&hPtr, memSize);

cudaMallocAsync(&dPtr,memSize, stream);

cudaMemcpyAsync(dPtr, hPtr, memSize, cudaMemcpyHostToDevice, stream);

kernel<<<100,512,0,stream>>>(dPtr);

cudaMemcpyAsync(hResults, dPtr ,memSize, cudaMemcpyDeviceToHost, stream);

cudaFreeAsync(dPtr, stream);

cudaStreamSynchronize(stream);

cudaStreamDestroy(&stream); // if the stream is not needed any longer

38

CUDA streams enable concurrency
Simultaneous support:
– CUDA kernels on GPU
– 2 cudaMemcpyAsync (in opposite directions)
– Computation on the CPU

● Requirements for Concurrency:
– CUDA operations must be in different, non-0, streams
– cudaMemcpyAsync with host from 'pinned' memory

39

CUDA Streams
std::vector<cudaStream_t> streams(4);
for (auto& s: streams) cudaStreamCreate(&s);
std::vector<float*> hPtrs(4); std::vector<float*> dPtrs(4);
for (int i=0; i<4; ++i) cudaMallocHost(&hPtrs[i],memSize);
for (int i=0; i<4; ++i) {
 cudaMallocAsync(&dPtrs[i],memSize, streams[i]);

cudaMemcpyAsync(dPtrs[i],hPtrs[i],memSize, cudaMemcpyHostToDevice, streams[i]);
kernelA<<<100,512,0,streams[i]>>>(dPtrs[i]);
kernelB<<<100,512,0,streams[i]>>>(dPtrs[i]);
cudaMemcpyAsync(hResults[i],dPtrs[i],memSize, cudaMemcpyDeviceToHost, streams[i]);

}

for (auto& s: streams) {
cudaStreamSynchronize(s);
cudaStreamDestroy(&s); // if the stream is not needed any longer

}

40

Device synchronization
Explicit Synchronization:
– cudaDeviceSynchronize()

● blocks host until all issued CUDA calls are complete
– cudaStreamSynchronize(stream)

● blocks host until all CUDA calls in streamid are complete
– cudaStreamWaitEvent(stream, event)

● all commands added to the stream delay their execution until the event has
completed

41

Parallel constructs in CUDA

42

Parallel Programming in CUDA

• We’ll start by adding two integers and build
up to vector addition

a b c

43

Addition on the Device

● A simple kernel to add two integers
__global__ void add(const int *a, const int *b, int *c) {

*c = *a + *b;
}

● As before __global__ is a CUDA C/C++ keyword meaning
– add() will execute on the device
– add() will be called from the host

44

Addition on the Device

● Note that we use pointers for the variables
__global__ void add(const int *a, const int *b, int *c) {

 *c = *a + *b;
}
● add() runs on the device, so a, b and c must point to device

memory

● We need to allocate memory on the GPU

45

Memory Management

● Host and device memory are separate entities
– Device pointers point to GPU memory

May be passed to/from host code
May not be dereferenced in host code

– Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code
● Simple CUDA API for handling device memory

– cudaMalloc(), cudaFree(), cudaMemcpy()
– Similar to the C equivalents malloc(), free(), memcpy()

46

Addition on the Device: add()

● Returning to our add() kernel

__global__ void add(const int *a, const int *b, int *c) {

 *c = *a + *b;
}

● Let’s take a look at main()…

47

Addition on the Device: main()
int main() {

 cudaStream_t stream;
 cudaStreamCreate(&stream);

int *a, *b, *c; // host copies of a, b, c
int *d_a, *d_b, *d_c;// device copies of a, b, c
int size = sizeof(int);
// Allocate space for device copies of a, b, c

 cudaMallocHost(&a,size);
 cudaMallocHost(&b,size);
 cudaMallocHost(&c,size);

*a = 2; *b = 7;

48

Addition on the Device: main()
 cudaMallocAsync(&d_a, size, stream);

 cudaMallocAsync(&d_b, size, stream);

 cudaMallocAsync(&d_c, size, stream);

 // Copy inputs to device

cudaMemcpyAsync(d_a, a, size, cudaMemcpyHostToDevice, stream);

cudaMemcpyAsync(d_b, b, size, cudaMemcpyHostToDevice, stream);

// Launch add() kernel on GPU

add<<<1,1,0,stream>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpyAsync(c, d_c, size, cudaMemcpyDeviceToHost, stream);

 cudaFreeAsync(d_a,stream); cudaFreeAsync(d_b,stream); cudaFreeAsync(d_c,stream);

 // Synchronize to be able to use c...

cudaStreamSynchronize(stream);

 cudaStreamDestroy(stream);

 cudaFreeHost(a); cudaFreeHost(b); cudaFreeHost(c);

}

49

Moving to Parallel

● GPU computing is about massive parallelism
– So how do we run code in parallel on the device?

add<<< 1, 1, 0, stream >>>();

add<<< N, 1, 0, stream >>>();
● Instead of executing add() once, execute N times in parallel

50

Vector Addition on the Device

● With add() running in parallel we can do vector addition
● Terminology: each parallel invocation of add() is referred to as a block

– The set of blocks is referred to as a grid
– Each invocation can refer to its block index using blockIdx.x
__global__ void add(const int *a, const int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

● By using blockIdx.x to index into the array, each block handles a different
index

51

Vector Addition on the Device

 __global__ void add(const int *a, const int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

● On the device, each block can execute in parallel:

c[0]= a[0]+b[0]; c[1]= a[1]+b[1]; c[2]= a[2]+b[2]; c[3]= a[3]+b[3];

Block 0 Block 1 Block 2 Block 3

52

Vector Addition on the Device: add()

● Returning to our parallelized add() kernel

 __global__ void add(const int *a, const int *b, int *c) {
 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

● Let’s take a look at main()…

53

Vector Addition on the Device: main()
 int main() {
 cudaStream_t stream; cudaStreamCreate(&stream);
 int N = 512;

std::vector<int> a, b, c;
a.resize(N); b.resize(N); c.resize(N);
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for host copies of a, b, c and

 // setup input values
 my_favorite_random_ints(a, N);
 my_favorite_random_ints(b, N);

// Alloc memory for device copies of a, b, c
cudaMallocAsync(&d_a, size, stream);
cudaMallocAsync(&d_b, size, stream);
cudaMallocAsync(&d_c, size, stream);

54

Vector Addition on the Device:
// Copy inputs to device
cudaMemcpyAsync(d_a, a.data(), size, cudaMemcpyHostToDevice, stream);
cudaMemcpyAsync(d_b, b.data(), size, cudaMemcpyHostToDevice, stream);
// Launch add() kernel on GPU with N blocks
add<<<N, 1, 0, stream>>>(d_a, d_b, d_c);
// Copy result back to host
cudaMemcpyAsync(c.data(), d_c, size, cudaMemcpyDeviceToHost, stream);
// Cleanup
cudaFreeAsync(d_a,stream); cudaFreeAsync(d_b,stream);

cudaFreeAsync(d_c,stream);
cudaStreamSynchronize(stream);
// Now you can use content of the c vector…
cudaStreamDestroy(stream);
}

55

CUDA Threads
● Terminology: a block can be split into parallel threads
● Let’s change add() to use parallel threads instead of parallel blocks

• We use threadIdx.x instead of blockIdx.x
• Need to make one change in main()…

__global__ void add(const int *a, const int *b, int *c) {
 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}

56

Combining Blocks and Threads
● We’ve seen parallel vector addition using:

– Many blocks with one thread each
– One block with many threads

Let’s adapt vector addition to use both blocks and threads

Why? We’ll come to that…
First let’s discuss data indexing…

57

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

Indexing Arrays with Blocks and Threads

● With blockDim.x threads/block a unique index for each thread is given by:

auto index = threadIdx.x + blockIdx.x * blockDim.x;

• No longer as simple as using blockIdx.x and threadIdx.x
– Consider indexing an array with one element per thread (8 threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

58

Vector Addition with Blocks and Threads

What changes need to be made in main()?

• Use the built-in variable blockDim.x for threads per block
auto index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel threads and
parallel blocks
__global__ void add(const int *a, const int *b, int *c) {
 auto index = threadIdx.x + blockIdx.x * blockDim.x;
 c[index] = a[index] + b[index];
}

59

Vector Addition on the Device: main()
 int main() {
 cudaStream_t stream; cudaStreamCreate(&stream);
 int N = 2048*2048;
 int threads_per_block = 512;

std::vector<int> a, b, c;
a.resize(N); b.resize(N); c.resize(N);
int *d_a, *d_b, *d_c; // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for host copies of a, b, c and

 // setup input values
 my_favorite_random_ints(a, N);
 my_favorite_random_ints(b, N);

// Alloc memory for device copies of a, b, c
cudaMallocAsync(&d_a, size, stream);
cudaMallocAsync(&d_b, size, stream);
cudaMallocAsync(&d_c, size, stream);

60

Vector Addition on the Device:
 // Copy inputs to device
 cudaMemcpyAsync(d_a, a.data(), size, cudaMemcpyHostToDevice, stream);
 cudaMemcpyAsync(d_b, b.data(), size, cudaMemcpyHostToDevice, stream);
 // Launch add() kernel on GPU with N blocks
 add<<<N/threads_per_block,threads_per_block, 0, stream>>>(d_a, d_b, d_c);
 // Copy result back to host
 cudaMemcpyAsync(c.data(), d_c, size, cudaMemcpyDeviceToHost, stream);
 // Cleanup
 cudaFreeAsync(d_a,stream); cudaFreeAsync(d_b,stream);

cudaFreeAsync(d_c,stream);
 cudaStreamSynchronize(stream);
 // Now you can use content of the c vector…
 cudaStreamDestroy(stream);
}

61

Handling Arbitrary Vector Sizes

Update the kernel launch:
add<<<(n + nThPerBlock - 1)/nThPerBlock, nThPerBlock >>>(d_a,d_b, d_c, n);

• Typical problems are not friendly multiples of blockDim.x
• Avoid accessing beyond the end of the arrays:

__global__ void add(const int *a, const int *b, int *c, int n) {
 auto index = threadIdx.x + blockIdx.x * blockDim.x;
 if (index < n)
 c[index] = a[index] + b[index];
}

62

Hardware vs Software
● From a programmer’s perspective:

– Blocks
– Kernel
– Threads
– Grid

● Hardware implementation:
– Streaming multiprocessors (SM)
– Warps

63

CUDA Runtime system
● Threads assigned to execution resources on a block-by-block basis.
● CUDA runtime automatically reduces number of blocks assigned to

each SM until resource usage is under limit.
● Runtime system:

● maintains a list of blocks that need to execute
● assigns new blocks to SM as they compute previously assigned

blocks
● Example of SM resources:

● threads/block or threads/SM or blocks/SM
● number of threads that can be simultaneously tracked and

scheduled
● shared memory

64

Context Switching
● Registers and shared memory are allocated for a block as long as

that block is active
● Once a block is active it will stay active until all threads in that

block have completed
● Context switching is very fast because registers and shared

memory do not need to be saved and restored
● Goal: Have enough transactions in flight to saturate the memory

bus
● Latency can be hidden by having more transactions in flight
● Increase active threads or Instruction Level Parallelism (ILP)

65

Time for exercises!

66

Shared Memory

67

Why Bother with Threads?

● Threads seem unnecessary
– They add a level of complexity
– What do we gain?

● Unlike parallel blocks, threads have mechanisms to:
– Communicate
– Synchronize

● To understand the gain, we need a new example…

68

1D Stencil
● Consider applying a 1D stencil sum to a 1D array of elements

– Each output element is the sum of input elements within a radius
– Example of stencil with radius 2:

69

Sharing Data Between Threads

● Terminology: within a block, threads share data via shared
memory

● Extremely fast on-chip memory, user-managed

● Declare using __shared__, allocated per block

● Data is not visible to threads in other blocks

70

Implementing With Shared Memory
● Cache data in shared memory

– Read (blockDim.x + 2 * radius) input elements
from global memory to shared memory

– Compute blockDim.x output elements
– Write blockDim.x output elements to global memory
– Each block needs a halo of radius elements at each

boundary

blockDim.x output elements

halo on left halo on right

71

Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {












72

Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];











73

Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
 auto s_index = threadIdx.x + RADIUS;









74

Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
 auto s_index = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[s_index] = in[g_index];






75

Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
 auto s_index = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[s_index] = in[g_index];
 if (threadIdx.x < RADIUS) {
 temp[s_index - RADIUS] = in[g_index - RADIUS];




76

Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
 auto s_index = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[s_index] = in[g_index];
 if (threadIdx.x < RADIUS) {
 temp[s_index - RADIUS] = in[g_index - RADIUS];
 temp[s_index + BLOCK_SIZE] =



77

Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
 auto s_index = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[s_index] = in[g_index];
 if (threadIdx.x < RADIUS) {
 temp[s_index - RADIUS] = in[g_index - RADIUS];
 temp[s_index + BLOCK_SIZE] =
 in[g_index + BLOCK_SIZE];
 }

78

Stencil Kernel

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[s_index + offset];

 // Store the result
 out[g_index] = result;
}

79

Data Race!

• The stencil example will not work…









80

__syncthreads()

● void __syncthreads();

● Synchronizes all threads within a block
– Used to prevent RAW / WAR / WAW hazards

● All threads must reach the barrier
– In conditional code, the condition must be uniform across the block

81

Stencil Kernel

__global__ void stencil_1d(const int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 auto g_index = threadIdx.x + blockIdx.x * blockDim.x;
 auto s_index = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[s_index] = in[g_index];
 if (threadIdx.x < RADIUS) {
 temp[s_index - RADIUS] = in[g_index - RADIUS];
 temp[s_index + BLOCK_SIZE] =
 in[g_index + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();

82

Stencil Kernel

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[s_index + offset];

 // Store the result
 out[g_index] = result;
}

83

Review (1 of 2)
● Launching parallel threads

– Launch N blocks with M threads per block with
kernel<<<N,M,0,stream>>>(…);

– Use blockIdx.x to access block index within grid
– Use threadIdx.x to access thread index within block

● Allocate elements to threads:

auto index = threadIdx.x + blockIdx.x * blockDim.x;

84

Review (2 of 2)

● Use __shared__ to declare a variable/array in shared memory
– Data is shared between threads in a block
– Not visible to threads in other blocks

● Use __syncthreads() as a barrier to prevent data hazards

85

Device Management

86

Reporting Errors

● All CUDA API calls return an error code (cudaError_t)
– Error in the API call itself

OR
– Error in an earlier asynchronous operation (e.g. kernel)

● Get the error code for the last error:
cudaError_t cudaGetLastError(void)

● Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)

cudaGetErrorString(cudaGetLastError());

87

Timing

● You can use the standard timing facilities (host side) in an
almost standard way…
– but remember: CUDA calls can be asynchronous!

88

Timing
● CUDA provides the cudaEvents facility. They grant you access to the GPU timer.

– Needed to time a single stream without loosing Host/Device concurrency.
cudaEvent_t start, stop;

cudaEventCreate(start); cudaEventCreate(stop);
cudaEventRecord(start, stream);

My_kernel<<<blocks, threads, 0, stream>>> ();

cudaEventRecord(stop, stream);

cudaEventSynchronize(stop);

float ElapsedTime;

cudaEventElapsedTime(&elapsedTime, start, stop);

cudaEventDestroy(start); cudaEventDestroy(stop);

	Slide 1
	Content of the theoretical session
	Slide 3
	Accelerators_clipboard0
	Slide 5
	CPU vs GPU architectures_clipboard1
	CPU vs GPU architectures_clipboard2
	Memory access patterns: cached
	Slide 9
	Inside a GPU SM: coalesced
	Slide 11
	Slide 12
	Slide 13
	Global memory
	Bandwidth_clipboard6
	Bandwidth
	Slide 17
	Heterogeneous Computing_clipboard7
	Simple Processing Flow_clipboard14
	Simple Processing Flow_clipboard15
	Simple Processing Flow_clipboard16
	Slide 22
	Slide 23
	Slide 24
	SPMD Phases
	Slide 26
	Hello World!_clipboard21
	Slide 28
	Hello World! with Device Code_clipboard22
	Hello World! with Device Code_clipboard23
	Hello World! with Device Code_clipboard25
	Hello World! with Device Code_clipboard27
	Slide 33
	Slide 34
	Slide 35
	Pinned memory
	Asynchronous GPU Operations: CUDA Streams
	CUDA streams enable concurrency
	CUDA Streams
	Slide 40
	Slide 41
	Slide 42
	Addition on the Device_clipboard30
	Slide 44
	Slide 45
	Slide 46
	Addition on the Device: main()_clipboard35
	Slide 48
	Slide 49
	Vector Addition on the Device_clipboard42
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Stencil Kernel_clipboard65
	Stencil Kernel_clipboard66
	Stencil Kernel_clipboard67
	Stencil Kernel_clipboard68
	Stencil Kernel_clipboard69
	Stencil Kernel_clipboard70
	Stencil Kernel_clipboard71
	Stencil Kernel_clipboard72
	Data Race!_clipboard73
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Timing_clipboard81
	Timing

