
4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 1

Scripting & Automation in
Linux

• By Anas Mohammad, Experimental Data Engineer @SESAME

• (28-04-2025) session start at 09:00 AM UTC

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 2

Topics:

Introduction
about
scripting &
automation
in Linux

10 mins

Bash
scripting
basics

40 mins

Python
scripting
methods

45 mins

Scheduling
tasks in Linux

25 mins

Bash scripting
hands-on

Python
scripting
hands-on

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 3

What is Scripting in Linux?​

Scripting in Linux refers to writing and executing shell scripts, which are
files containing a series of commands that the shell (command-line
interpreter) executes in sequence.​

Introduction about scripting &
automation in Linux

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 4

Automation means using scripts, tools, and scheduling methods to
perform tasks automatically without manual intervention.

What is Automation in Linux?​

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 5

✔ Reduces manual effort and human errors
✔ Improves efficiency and consistency
✔ Saves time on repetitive tasks
✔ Helps in system administration and DevOps tasks

Why Use Scripting and Automation?

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 6

Key Aspects of Linux Scripting:

Key
Aspects

Automation

Customization

Efficiency

Portability

System
Administration

Accessibility

Integration

Debugging

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 7

Bash Scripting​

• Bash (Bourne Again Shell) is a command-line interpreter for Unix/Linux.

• It allows users to execute commands and write scripts to automate tasks.

• Common uses: System automation, server management, DevOps, etc.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 8

Get Started with Bash Scripting

• Naming convention (.sh)

• Shebang (#!/bin/bash)

• System Commands (mv, echo, ..etc.)

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 9

Executing Bash Scripts

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 9

To make the script executable, assign execution rights to the
user using this chmod command:

• Make it executable (chmod +x test.sh)

• run it using one of these commands:
* bash test.sh
*./test.sh

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 10

Bash Scripting Basics

1. Comments: comments start with a (#) in bash scripting, they are very helpful
in documenting the code, in order to help others understand the code.

Assign directly

Assign by substitution

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 11

Bash Scripting Basics

2. Variables: variables are used to store data values without specifying data types. In
Bash, a variable is capable of storing numeric values, strings of characters, ..etc.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 12

Bash Scripting Basics
Variable naming conventions:

Rule Description Example (Valid) Example (Invalid)

Start with a letter or underscore
Variable names must
begin with a letter (a-z, A-
Z) or an underscore (_)

name = “Anas"
_name = “Anas"

1name = "Anas" ❌

Can contain letters, numbers, and underscores
Allowed characters:
letters (a-z, A-Z), numbers
(0-9), underscores (_)

user_age = 25 user-age = 25 ❌

Case-sensitive
Count and count are
different variables

count = 10
Count = 20

-

No spaces or special characters
Variable names should
not include spaces or
special characters

userName = "Anas"
user name = "Anas" ❌
user@name = "Anas" ❌

Use descriptive names
Name variables based on
their purpose

total_price = 99.99
x = 99.99 (Not
descriptive)

Avoid reserved keywords
Don't use bash keywords
(if, else, …etc.) as variable
names

my_name = “Anas" if = “Anas" ❌

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 13

Bash Scripting Basics

3. Input and output:

Concept Example

Reading user input (input)
echo "What's your name?“

read name

echo "Welcome $name!"

Reading from a file (input)

while read line;

do

echo $line

done < test.txt

Printing to terminal (output) echo "Hello, World!"

Redirecting output (output) echo “output of testing script!" > output.txt

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 14

Bash Scripting Basics

4. Conditional statements (if/else): used for decision-making, there are several
ways to evaluate conditions, including if, if-else, if-elif-else, and nested
conditionals

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 15

Bash Scripting Basics

List of conditions operators in Bash, including numeric comparisons, string
comparisons, file checks, and logical operators:

1. Numeric Comparisons

Operator Description Example

-eq Equal to (==) [$a -eq $b]

-ne Not equal to (!=) [$a -ne $b]

-gt Greater than (>) [$a -gt $b]

-lt Less than (<) [$a -lt $b]

-ge Greater than or equal to (>=) [$a -ge $b]

-le Less than or equal to (<=) [$a -le $b]

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 16

Bash Scripting Basics

List of conditions operators in Bash, including numeric comparisons, string
comparisons, file checks, and logical operators:

2. String Comparisons

Operator Description Example

= or == Strings are equal ["$a" = "$b"] or [["$a" == "$b"]]

!= Strings are not equal ["$a" != "$b"]

-z String is empty (None or Null) [-z "$a"]

-n String is not empty [-n "$a"]

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 17

Bash Scripting Basics

List of conditions operators in Bash, including numeric comparisons, string
comparisons, file checks, and logical operators:

3. File Checks

Operator Description Example

-e File exists [-e file.txt]

-f File is a regular file [-f file.txt]

-d Directory exists [-d /path/to/dir]

-r File is readable [-r file.txt]

-w File is writable [-w file.txt]

-x File is executable [-x script.sh]

-s File is not empty [-s file.txt]

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 18

Bash Scripting Basics

List of conditions operators in Bash, including numeric comparisons, string
comparisons, file checks, and logical operators:

4. Logical Operators

Operator Description Example

-a AND (inside [], less preferred) [$a -gt 5 -a $b -lt 10]

-o OR (inside [], less preferred) [$a -gt 5 -o $b -lt 10]

&& AND (inside [[]], preferred) [[$a -gt 5 && $b -lt 10]]

! NOT (negation) [! -f file.txt]

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 19

Bash Scripting Basics

5. Looping and Branching: Loops repeat actions multiple times (for loop, while
loop, case statement)

For loop

while loop

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 20

Bash Scripting Basics

5. Looping and Branching: Loops repeat actions multiple times (for loop, while
loop, case statement)

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 21

Bash Scripting Basics

6. Functions: Bash functions allow you to reuse code by grouping commands into
a single unit. They help in making scripts more modular, readable, and
maintainable.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 22

Bash Scripting Basics
Feature Description Example

Defining a Function
A function is defined using curly braces {} or
the function keyword.

greet() { echo "Hello!"; }

Calling a Function Simply write the function name to execute it. greet

Function with Arguments
Use $1, $2, … to access arguments passed to
the function.

greet_user() { echo "Hello, $1!"; } greet_user

"Alice"

Returning a Value
Use echo to return a value (Bash does not
support return for values).

add() { echo $(($1 + $2)); } result=$(add 5

10); echo "Sum: $result"

Exit Status (Return Code)
Functions return 0 for success and non-zero
for failure using return.

check() { return 1; } check; echo $?

Local Variables
Use local to restrict a variable's scope to the
function.

my_func() { local x=10; echo $x; }

Conditional Function Calls Use a function inside an if statement.
is_admin() { ["$1" == "admin"]; } if is_admin

"admin"; then echo "Allowed"; fi

Recursive Function
A function can call itself (with a base
condition).

factorial() { [$1 -le 1] && echo 1

Error Handling Use return or set -e to handle errors. check_file() {[-f "$1"]}

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 23

Bash Task

Build a simple server/client system using Netcat (nc) and Bash

Description:
You will create two Bash scripts:
• server.sh — sets up a simple chat server.
• client.sh — connects to the server and allows a user to send/receive messages.

Details:
• Server (server.sh):

▪ Listens on a specified port.
▪ Accepts incoming messages and displays them.

• Client (client.sh):
▪ Connects to the server IP and port.
▪ Sends typed messages to the server.
▪ Displays responses from the server.

• Log all messages to a file (on both client and server).

Tools/Concepts Involved:
• netcat (nc)​
• read and echo​
• loops​
• redirection (>, <)​
• background processes (&)

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 24

Python Scripting Methods in Linux

What is Python?
Python is a high-level, interpreted programming language. It emphasizes code
readability with its notable use of significant whitespace.

Why use Python for scripting in Linux?
Python comes pre-installed on most Linux distributions. Its clear syntax makes
automation scripts easy to write and maintain.

The extensive standard library provides ready solutions for most system tasks.
Python scripts work across different Linux versions with minimal changes.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 25

Python Modules, Methods, Design Patterns

1. Logging

2. os and sys

3. Time and Datetime

4. argparsing

5. Subprocess

6. File Operations (Txt, CSV, JSON)

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 26

Package Manager in Python
What is pip and Why Use It?

• `pip` streamlines the installation and management of Python packages,
enhancing development efficiency

Package Management Simplified

• Automatically resolves and installs package dependencies, reducing conflicts
and ensuring compatibility

Dependency Handling

• Integrates with virtual environments, allowing separate project dependencies
to prevent version conflicts

Environment Isolation

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 27

Installing Packages with pip

Basic Installation Command: The fundamental
command for installing a package with pip is `pip
install package_name`, which initiates the process
of downloading and integrating the specified
package into the current Python environment,
ensuring access to its functionalities.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 28

Pip basic commands

Command Description Example

pip install <package_name> Install a package from PyPI (Python Package Index). pip install requests

pip install <package_name>==<version> Install a specific version of a package. pip install requests==2.25.1

pip uninstall <package_name> Uninstall a package. pip uninstall requests

pip freeze List installed packages with their versions. pip freeze

pip show <package_name> Show detailed information about a package. pip show requests

pip list List installed packages (without version details). pip list

pip search <query> Search for a package on PyPI (deprecated in newer versions). pip search requests

pip install -r <requirements_file> Install all the packages listed in a requirements file. pip install -r requirements.txt

pip install --upgrade <package_name> Upgrade an installed package to the latest version. pip install --upgrade requests

pip install --user <package_name> Install a package for the current user only (not globally). pip install --user requests

pip check Check installed packages for dependency conflicts. pip check

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 29

Understanding requirements.txt

Each line specifies a package with optional
version constraints:

• package==1.0.0 (exact version)

• package>=1.0.0 (minimum version)

• package>=1.0.0,<2.0.0 (version range)

Lines starting with # are treated as comments
and ignored during installation.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 30

Setting Up a Virtual Environment (Only
Python dependencies)
What is a Virtual Environment?

1️⃣ Isolated Project Dependencies: Virtual environments
prevent conflicts by isolating libraries for each project.

2️⃣ Customizable Python Interpreter: Each environment
can use a specific Python version tailored to project
needs.

3️⃣Simplified Collaboration: Sharing projects becomes
easier with a self-contained environment, ensuring
consistent setups.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 31

How to create venv ?

Install
venv

• sudo pipX.X install virtualenv

Create
venv

• pythonX.X -m venv myvenv
• virtualenv -p pythonX.X myvenv

Activate
venv

• source myenv/bin/activate

Deactivat
e venv

• deactivate

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 32

How the venv is being activated ?

• PATH is modified to prioritize the virtual environment

• Python and pip now point to the versions in your environment

• Shell prompt is updated as a visual indicator ((myenv) user@host:~$)

• Environment-specific packages become available

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 33

Install packages in venv

Activate First: Always ensure your virtual
environment is activated

Use pip Normally: pip install package_name works
as usual

Use Requirements File: pip install -r
requirements.txt for multiple packages

Verify Installation: pip list shows packages installed
in this environment only

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 34

Logging

• Logging is the process of

recording events that happen

during a program’s execution.

• It helps track bugs, monitor

performance, and understand

application flow.

• Preferred over print() for real-

world applications.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 35

Logging Levels

• DEBUG: Detailed info for diagnosing problems

• INFO: Confirmation that things are working as expected

• WARNING: Something unexpected happened, but the program still works

• ERROR: A more serious problem, the program may not work as expected

• CRITICAL: A serious error, program may not continue

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 36

OS and SYS

• Python has built-in modules to interact with the OS and system.

• os: Interact with the operating system (files, directories, paths).

• sys: Access Python runtime environment and system-specific parameters.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 37

What is the os Module?
• Interface between Python and the OS.

• Useful for:

• File and directory operations

• Environment variables

• Process management

Common os Module Functions
• os.name – Name of the OS ('posix', 'nt')

• os.getcwd() – Get current working directory

• os.chdir(path) – Change current directory

• os.listdir(path) – List files and directories

• os.mkdir(path) – Create a new directory

• os.remove(filename) – Delete a file

• os.path – Submodule for file paths

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 38

What is the sys Module?

Provides access to system-specific parameters and functions.

Useful for:

- Command-line arguments

- Exiting scripts

- Interacting with stdin, stdout, stderr

- Accessing module paths

Common sys Module Functions
sys.argv – List of command-line arguments

sys.exit() – Exit the program

sys.path – List of directories for module search

sys.version – Python version

sys.platform – Platform identifier

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 39

Time and datatime

Why Work With Time in Python?

• Logging timestamps

• Scheduling tasks

• Measuring execution time

• Parsing and formatting date/time strings

• Handling time zones and daylight saving

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 40

The time Module

• Provides access to time-related functions.
• Works with UNIX timestamps (seconds since Jan 1, 1970).

import time
time.time() # Current timestamp
time.sleep(2) # Sleep for 2 seconds
time.localtime() # Convert timestamp to struct_time

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 41

The datetime Module

• More powerful and object-oriented.

• Supports dates, times, time zones, and arithmetic.

Key Classes:

• datetime.date

• datetime.time

• datetime.datetime

• datetime.timedelta

• datetime.timezone

from datetime import datetime
now = datetime.now()
print(now) # 2025-04-25 12:34:56.789000
now.strftime("%Y-%m-%d %H:%M:%S")
datetime.strptime("2025-04-25", "%Y-%m-%d")

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 42

argparsing

What is argparse?

• argparse is a built-in Python module for parsing command-line arguments.

• Helps make Python scripts user-friendly and flexible.

• Replaces manual sys.argv parsing with a cleaner, more scalable approach.

Why Use argparse?

• Automatically generates help and usage messages.

• Handles both positional and optional arguments.

• Validates and converts argument types.

• Clean syntax with minimal boilerplate.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 43

argparsing example

import argparse

parser = argparse.ArgumentParser()

args = parser.parse_args()

parser = argparse.ArgumentParser(description="My awesome script")

parser.add_argument("--mode", help="Choose the mode")

parser.add_argument("y", type=int)

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 44

File operations (txt, csv, json)

Working with .txt Files

Writing to a text file
with open("example.txt", "w") as file:

file.write("Hello, World!")

Reading from a text file
with open("example.txt", "r") as file:

content = file.read()
print(content)

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 45

File operations (txt, csv, json)

Working with .csv Files

import csv

Writing to CSV
with open("data.csv", "w", newline="")
as file:

writer = csv.writer(file)
writer.writerow(["Name", "Age"])
writer.writerow(["Alice", 25])

Reading from CSV
with open("data.csv", "r") as file:

reader = csv.reader(file)
for row in reader:

print(row)

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 46

File operations (txt, csv, json)

Working with .json Files

import json

Writing JSON
data = {"name": "Alice", "age": 25}
with open("data.json", "w") as file:

json.dump(data, file)

Reading JSON
with open("data.json", "r") as file:

content = json.load(file)
print(content)

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 47

Python Task

• Accept a folder path via argparse

• Periodically scan the folder (every few seconds) for changes

• Use subprocess to ls Linux the folder

• Log file events with logging to a logfile

• Write a summary report in TXT, CSV, and JSON formats

• Use os and sys to handle paths, exits, etc.

• Use time and datetime for timestamps

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 48

Scheduling &
Automation in
Linux

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 49

Linux scheduling tools

The classic and most widely used Linux schedulerCron
• Time-based job scheduler
• Built into all Linux distributions

For one-time scheduled tasksAt Command
• Simple interface
• Queue-based scheduling

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 50

Cron (Background Service)

Cron is a time-based job scheduler in Unix-like
operating systems. It enables users to schedule
commands or scripts to run at specific times or
intervals.

The cron daemon (crond) runs continuously in the
background. It starts automatically when the
system boots up.

Automates system maintenance tasks, backups,
notifications, and any process that needs to run
regularly without human intervention.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 51

Crontab Syntax
* * * * * command_to_run
| | | | |
| | | | +----- Day of the week (0 - 7) (Sunday = 0 or 7)
| | | +------- Month (1 - 12)
| | +--------- Day of the month (1 - 31)
| +----------- Hour (0 - 23)
+------------- Minute (0 - 59)

Each crontab entry follows this five-field time pattern. After these fields comes the command to execute.

• Asterisk (*): Matches all possible values for the field. Example: * in the hour field means "every hour".

• Comma (,): Separates multiple values for one field. Example: 1,3,5 in day field means 1st, 3rd, and 5th day.

• Hyphen (-): Defines a range of values. Example: 1-5 in day field means Monday through Friday.

• Forward slash (/): Specifies step values. Example: */4 in hour field means every 4th hour.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 52

Crontab Commands

• crontab –e: Opens your crontab file in the default editor. Creates a new one if it doesn't exist.

• crontab –l: Displays the current user's crontab file. Shows all scheduled jobs.

• crontab –r: Deletes your entire crontab file. Use with caution!

• crontab –u: Specifies which user's crontab to modify. Only available to root.

Cron Generator: https://crontab.guru/

https://crontab.guru/

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 53

At Command
The "at" command schedules one-time tasks to run at a specified time.

Perfect for jobs that don't need to recur.

Syntax:

•now + 5 minutes

•noon

•Midnight

•teatime (4pm)

•Tomorrow

•noon tomorrow

•next week

•now + 1 hour

•now + 30 minutes

Time Specifications

•4:00 PM July 31

•July 31, 2025

•31.7.2025

•07/31/2025

•next Monday

•Friday

Date Specifications

4/27/2025

Task about cron and at

Very simple cron and at tasks to run a bash script after 5
min, the bash script redirect the output of ll command to
a file.

4/27/2025 https://indico.sesame.org.jo/e/EUMEDPlus 55

Learning References:

1. Python Course for Dr. Ghaith Abandah from University of Jordan:
https://www.abandah.com/gheith/?page_id=13

2. Online web for hands on (Code Camp): https://www.freecodecamp.org/

https://www.abandah.com/gheith/?page_id=13
https://www.freecodecamp.org/

