
Efficient memory management
2023 ESC at Sesame

Andrea Bocci
CERN

disclaimer

29-30 May, 2023 A. Bocci - Efficient memory management 3 / 52

disclaimer

this is my first time preparing and teaching this course , so your feedback is very welcome !

if we have extra time after covering all the material, I’ll be happy to answer more questions,
or propose more exercises

https://creativecommons.org/licenses/by-sa/4.0/

why memory ?

29-30 May, 2023 A. Bocci - Efficient memory management 5 / 52

what is computer memory …

● memory refers to the storage used by a program to read and write data

● a virtual memory OS can map different hardware to a single address space:
● system memory (usually DDR SDRAM), allocated with malloc() or new
● GPU memory: e.g. CUDA unified memory
● HBM memory: e.g. on the latest Xeon Max CPUs
● disk (SSD or HDD) areas: e.g. swap space or mmap()’ed files

● … and why is it important ?

● from the point of view of the CPU, most memory is slow
● this is the single most important factor to consider to write efficient software

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 6 / 52

memory speed vs CPU speed

● modern CPUs (and GPUs) work at frequency of the order of the GHz
● datacentre CPUs: 2 GHz – 4 GHz
● datacentre GPUs: 1 GHz – 2 GHz

● system memory is significantly slower
● with a latency of 200 ns, a CPU can perform 400 operations while waiting for data to arrive !

memory latency bandwidth capacity cost

L1 cache 2 ns 100 TB/s 64 kB / core

L2 cache 6 ns 50 TB/s 512 kB / core

L3 cache 20 ns (?) 10 TB/s 4 MB / core 1-2 $/MB

HBM RAM 200 ns 2 TB/s up to 80 GB / device 20-100 $/GB

DDR RAM 200 ns 20-200 GB/s up to 64 GB / core 3-4 $/GB

SSD 50-100 us 5 GB/s 30 TB / drive 100-200 $/TB

HDD 2 ms 300 MB/s 30 TB / drive 10-20 $/TB

lo
w

er
 la

te
n

cy
hi

g
he

r
b

an
d

w
id

th
lo

w
er co

st
hig

her cap
acity

based on the performance of an AMD Rome EPYC CPU, NVIDIA A100 GPU, and datacentre-grade SSDs and HDDs

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 7 / 52

impact of memory latency

● can we write software that runs efficiently
despite the relatively high memory latency ?

● yes !
● from a paper by Intel engineers that analyses the

performance of different software packages
● Enterprise software is strongly affected by

memory latency
● HPC software is mildly affected by latency,

being instead limited by memory bandwidth

● how ?
Quantifying the performance impact of memory latency and
bandwidth for big data workloads, 2015 IEEE International Symposium
on Workload Characterization, Russel M. Clapp et al, Intel Corporation
DOI:10.13140/RG.2.1.2677.2562

http://dx.doi.org/10.13140/RG.2.1.2677.2562
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 8 / 52

data-oriented design

● Data-oriented design
● exploit temporal data locality

– work as much as possible on data that has just been read or written to memory

– benefit from the data that is “hot” in the processor cache

● exploit spatial data locality
– work as much as possible on adjacent data, to benefit from reading whole cache lines

– avoid pointers to pointers to pointers to …

– e.g. Array of Structures vs Structures of Arrays

● hide memory latency
– prefetch data in advance before it needs to be used, and work on previous data in the meantime

– keep the processor busy while more data is being fetched from memory

– a common approach on GPUs, more complicated on CPUs

● avoid dynamic memory allocations
– when possible – definitely in your hot inner loops

● avoid costly high level abstraction
● early adopters: video game development

https://en.wikipedia.org/wiki/Data-oriented_design
https://gamesfromwithin.com/data-oriented-design
https://creativecommons.org/licenses/by-sa/4.0/

c++ types and memory

29-30 May, 2023 A. Bocci - Efficient memory management 10 / 52

size of data types

● size
● the size of a type is the number of bytes required to store an object of that type
● the size of a char, std::byte and char8_t is always 1
● the size of a class type includes any additional padding and alignment requirements
● the size of a type can be queried with the sizeof() operator

type 32-bit mode 64-bit mode

sizeof(char) 1 bytes 1 bytes
sizeof(short) 2 bytes 2 bytes
sizeof(int) 4 bytes 4 bytes
sizeof(long) 4 bytes 8 bytes
sizeof(long long) 8 bytes 8 bytes
sizeof(__int128) n/a 16 bytes

sizeof(float) 4 bytes 4 bytes
sizeof(double) 8 bytes 8 bytes
sizeof(long double) 12 bytes 16 bytes

sizeof(void *) 4 bytes 8 bytes

sizeof(std::vector<int>) 12 bytes 24 bytes

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 11 / 52

data types: alignment

● alignment
● the alignment of a type is the number of bytes between successive addresses at which objects of this

type can be allocated
– e.g. if a type has an alignment of 4, it can be allocated only every 4 bytes: 0x…00, 0x…04, 0x…08, 0x…0c, 0x…10, …

● the alignment of a class type is the largest of the alignment of its members
– this guarantees that all data members are properly aligned

● the alignment of a type can be queried with the alignof() operator
● stricter alignment can be requested with the alignas() specifier
● alignment is always a power of 2: 1, 2, 4, 8, 16, …

● std::max_align_t
● a type with an alignment requirement as large as any scalar type
● alignof(std::max_align_t) returns the maximum alignment of any scalar type
● alignas(std::max_align_t) aligns a variable or type to the largest alignment of any scalar type

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 12 / 52

exercise

● write a simple program that prints the size and alignment of various
● integer types: bool, char, short, int, long, …
● floating point types: float, double, long double
● pointers

– does the size and alignment of a pointer depend on the type it points to ?

● std::max_align_t

● arrays
– does the size and alignment of the array depend on the array element type ?

– does the size of the array include all of its content ?

● STL containers
– std::string, std::vector, etc.

– does the size of the container include all of its content ?

● user defined structures or classes
– try mixing types with different sizes and alignments

– try using the alignas() specifier https://godbolt.org/z/MWGrWqr5h

https://godbolt.org/z/MWGrWqr5h
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 13 / 52

layout of class data members

● non-static data members are allocated so that the members declared later have higher
addresses within a class object

● up to C++20, the compiler can arrange the public and private data members in two separate groups
● this is no longer the case starting from C++23

● additional padding may be necessary to properly align each data member

● my advice: group data members based on their size and alignment
● avoid padding, and reduce the overall object size

● my advice: group data member based on their usage
● if possible, fit data that is used together within a single cache line (usually 64 bytes)

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 14 / 52

exercise

● how would you declare a class or struct for a Particle with these data member
● 1 const std::string to hold the particle’s name;
● 3 doubles for the x, y, z velocities
● 3 bools to mark if there has been a collision along the x, y z directions
● 1 float for the mass
● 1 float for the energy
● 3 doubles for the x, y, z coordinates
● 1 const int for the particle’s id
● 1 static int to keep track of the total number of objects

?

● can you fit all non-const data in a single cache line ?

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 15 / 52

exercise

struct BadParticle {

 static int counter_; // static: not part of the class layout

 double x_, px_;

 bool hit_x_;

 double y_, py_;

 bool hit_y_;

 double z_, pz_;

 bool hit_z_;

 float mass_;

 float energy_;

 const std::string name_; // const: keep out of the hot data

 const int id_;

};

struct GoodParticle {

 static int counter_; // static: not part of the class layout

 double x_, y_, z_; // non-const data modified together

 double px_, py_, pz_;

 bool hit_x_, hit_y_, hit_z_;

 float mass_;

 float energy_;

 const int id_;

 const std::string name_; // const: keep out of the hot data

};

https://godbolt.org/z/zTP47zbdK

https://godbolt.org/z/zTP47zbdK
https://creativecommons.org/licenses/by-sa/4.0/

memory primitives

29-30 May, 2023 A. Bocci - Efficient memory management 17 / 52

basic memory operations

● allocating and freeing a memory block
● dealing with alignment
● C++: memory allocation vs object construction
● C++: constructing an object in place

● filling or clearing a memory block

● copying the content of a memory block
● C++: trivial, standard-layout, and implicit-lifetime types

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 18 / 52

memory allocations

● void* std::malloc(std::size_t size);
● allocate a block of memory of at least size bytes, with an alignment valid for all scalar types
● return a pointer without any type information
● return a null pointer is the allocation failed
● the memory is not initialised, and no object is constructed in this memory (…)
● the memory is not freed automatically
● useful to get a buffer that will be immediately overwritten, or as a primitive for other operations

● void* std::calloc(std::size_t num, std::size_t size);
● similar to malloc()
● allocate a block of memory for at least num elements of size bytes
● the memory is initialised to zeros
● this may be more efficient that calling malloc() and explicitly zeroing the memory

https://en.cppreference.com/w/cpp/memory/c/malloc
https://en.cppreference.com/w/cpp/memory/c/calloc
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 19 / 52

dealing with alignment

● malloc() returns a pointer to a memory block suitably aligned for any scalar types
● usually, this means the alignment is 8 or 16 bytes
● can we get memory with a wider alignment ?
● for example, we may want memory aligned to a cache line size of 64 bytes

● void* std::aligned_alloc(std::size_t alignment, std::size_t size);
● similar to malloc(), allocate a block of memory of at least size bytes
● the memory buffer is aligned to at least alignment bytes

https://en.cppreference.com/w/cpp/memory/c/aligned_alloc
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 20 / 52

freeing allocations

● to avoid memory leaks, the memory allocated by malloc(), calloc() or aligned_alloc()
must be deallocated with free()

● void std::free(void* ptr);
● frees a memory block obtained by malloc(), calloc() or aligned_alloc()
● the contents of the memory is not erased
● any objects in the memory are not destroyed

https://en.cppreference.com/w/cpp/memory/c/free
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 21 / 52

memory allocation vs object construction

● in C++ creating an object involves two operations
● allocating some memory
● constructing an object in this memory

● in some cases we may want to separate these operations, for example…
● to allocate an object inside some special-purpose memory
● to dynamically create multiple objects or arrays of objects inside a single memory buffer

● in a similar way, we can separate the destruction and deallocation of an objects:
● destroying an object in memory
● deallocating the memory

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 22 / 52

constructing objects

● malloc() and similar functions return raw, uninitialised memory
● they do not construct any objects
● how can we construct C++ objects in this raw memory ?

● T* new(ptr) T{args…};
● use memory already allocated at address ptr
● construct an object of type T using the constructor T::T(args…)

● T* new(ptr) T[N]{…};
● use memory already allocated at address ptr
● construct N objects of type T using the default constructor or the provided values

● T* std::construct_at(T* ptr, args…);
● same as T* new(ptr) T{args…};
● requires C++20

https://en.cppreference.com/w/cpp/language/new#Placement_new
https://en.cppreference.com/w/cpp/language/new#Placement_new
https://en.cppreference.com/w/cpp/memory/construct_at
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 23 / 52

destroying objects

● before deallocating (or reusing) some memory, we must destroy the objects that we
have created there

● std::destroy_at(T* ptr);
● calls the destructor of the object of type T at the memory address ptr
● equivalent to ptr->~T()

● std::destroy_n(T* ptr, std::size_t n);
● calls the destructor of the n objects of type T starting at the memory address ptr
● equivalent to for (; n > 0; ++ptr, --n) ptr->~T()
● (actually, this function takes an Iterator, not a pointer)

● std::destroy(T* first, T* last);
● calls the destructor of the objects of type T in the range [first, last)

https://en.cppreference.com/w/cpp/memory/destroy_at
https://en.cppreference.com/w/cpp/memory/destroy_n
https://en.cppreference.com/w/cpp/memory/destroy
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 24 / 52

filling and copying memory

● void* std::memset(void* dest, int ch, std::size_t count);
● writes the byte value of ch to count bytes starting at the address dest
● take care not to overflow the buffer!

● void* std::memcpy(void* dest, const void* src, std::size_t count);
● copies count bytes from src to dest
● the two buffers must not overlap !

● void* std::memmove(void* dest, const void* src, std::size_t count);
● copies count bytes from src to dest
● the two buffers may overlap

https://en.cppreference.com/w/cpp/string/byte/memset
https://en.cppreference.com/w/cpp/string/byte/memcpy
https://en.cppreference.com/w/cpp/string/byte/memmove
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 25 / 52

“efficient” C++ types

● creating, copying, moving, and destroying C++ objects calls special member functions
● constructors
● copy and move constructors
● copy and move assignments
● destructor

● exercise
● what happens if you use std::memcpy to make a copy of an std::string ?
● did it really make a copy of the object ?
● if you modify either of the old or new objects, what happens to the other one ?
● what is happening ?

https://godbolt.org/z/draffTdj6
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 26 / 52

“efficient” C++ types

● creating, copying, moving, and destroying C++ objects calls special member functions
● constructors
● copy and move constructors
● copy and move assignments
● destructor

● this is extremely useful to guarantee the correctness of the application

● but …
● sometimes we may want to avoid to achieve higher efficiency
● sometimes it may not be possible to call these special functions (e.g. copy an object to GPU memory)

● trivial and implicit-lifetime types

https://en.cppreference.com/w/cpp/language/classes#Trivial_class
https://en.cppreference.com/w/cpp/language/classes#Implicit-lifetime_class
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 27 / 52

trivial types

● trivially copyable types
● have compiler-defined or defaulted copy and move constructors, and destructor
● have no virtual member functions and no virtual base classes
● may have different access specifier (public, private, etc.)

● can be copied and destructed without calling any special member functions
● can be copied with std::memcpy() or std::memmove()
● can be implicitly destructed when deallocating memory

● trivial types, in addition
● have compiler-defined or defaulted default constructor, and no default initialisers

https://en.cppreference.com/w/cpp/language/classes#Trivial_class
https://en.cppreference.com/w/cpp/language/classes#Trivially_copyable_class
https://en.cppreference.com/w/cpp/language/classes#Trivial_class
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 28 / 52

implicit-lifetime types

● implicit-lifetime types
● are scalars or aggregates (arrays or simple class/structs)
● have a trivial default constructor and destructor
● have no private or protected (non-static) data members and base classes
● have no virtual member functions

● can be implicitly constructed when allocating memory
● without the need to call any constructor

https://en.cppreference.com/w/cpp/language/classes#Implicit-lifetime_class
https://en.cppreference.com/w/cpp/language/classes#Implicit-lifetime_class
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 29 / 52

exercise

● can you declare a class type that is
● trivially copyable
● has an implicit lifetime

● suggestion
● use the std::is_trivially_copyable_v<T> and std::is_implicit_lifetime_v<T> type traits to check!

https://en.cppreference.com/w/cpp/types/is_trivially_copyable
https://en.cppreference.com/w/cpp/types/is_implicit_lifetime
https://creativecommons.org/licenses/by-sa/4.0/

optimising memory access

29-30 May, 2023 A. Bocci - Efficient memory management 31 / 52

optimising memory access

● efficient data processing depends on
● data structures
● data access patterns

● should be designed together to minimise memory latency and maximise throughput
● maximise locality
● minimise wasted memory access

● memory access patterns
● sequential access ← good on CPUs, because of the serial execution, not so good on GPUs
● strided access ← good on GPUs, because of the implicit parallelism, not so good on CPUs
● other special cases for 2D, 3D, etc. loops
● random access ← bad everywhere

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 32 / 52

●

● sequential access: elements are accessed consecutively
● good use of the prefetcher
● good cache locality, good utilisation of the memory bandwidth
● consecutive memory areas can be read for each cycle: coalesced memory access

●

● random access: elements are access in arbitrary order
● impossible to prefetch next access
● bad cache locality, bad utilisation of the memory bandwidth
● do not do this !

memory access patterns

x0 x1 x2 x3 … … xi xi+1 xi+2 …

x3 … x2 x0 x1

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 33 / 52

●

● strided access: elements are accessed at fixed intervals
● good use of the prefetcher
● on CPUs: cache locality and memory bandwidth utilisation depend on the stride

– stride << cache line size: partial usage (1 / stride)

– stride cache line size: bad utilisation≳

●

● on GPUs: good use of cache locality and memory bandwidth if the stride equal the grid size
● consecutive memory areas can be read for each cycle: coalesced memory access

memory access patterns

… xi … … xi+k … … xi+2k …

… xi xi+1 xi+2 xi+3 xi+k xi+k+1xi+k+2xi+k+3 xi+2k …

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 34 / 52

struct GoodParticle {

 static int counter_;

 double x_, y_, z_;

 double px_, py_, pz_;

 bool hit_x_, hit_y_, hit_z_;

 float mass_;

 float energy_;

 const int id_;

 const std::string name_;

};

GoodParticle

double x_ double y_

double z_ double px_

double py_ double pz_

booleans float mass_ float energy_ const int id_

const std::string name_

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 35 / 52

exercise

● write a function that takes as arguments
● a collection of GoodParticle objects (by pointers, iterators, or reference)
● a boundary: double x_max
● a time interval: double t

● and
● iterates over the collection of GoodParticle objects
● for each object

– update the position x = x + px / mass * t

– if the updated x is less than 0 or greater than x_max
● set hit_x to true and change the sign of px

– else
● set hit_x to false

● what memory access pattern are you using ?

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 36 / 52

struct GoodParticle {

 static int counter_;

 double x_, y_, z_;

 double px_, py_, pz_;

 bool hit_x_, hit_y_, hit_z_;

 float mass_;

 float energy_;

 const int id_;

 const std::string name_;

};

std::vector<GoodParticle> particles;

strided access

double x_ double y_

double z_ double px_

double py_ double pz_

booleans float mass_ float energy_ const int id_

const std::string name_

double x_ double y_

double z_ double px_

double py_ double pz_

booleans float mass_ float energy_ const int id_

const std::string name_

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 37 / 52

how efficient is it ?

● this is a strided access
● a GoodParticle has a size of 96 bytes
● our example accesses only a few members from each GoodParticle object

● while reading consecutive GoodParticle objects
● we read all 96 bytes into the cache
● we access only 21 bytes

– x (double, 8 bytes), px (double, 8 bytes), mass (float, 4 bytes) and x_hit (bool, 1 byte) = 21 bytes

● we actually use less than 25% of the memory that we read !

● how can we change the data structure to improve the locality and bandwidth utilisation ?

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 38 / 52

Array of Structures

● our current approach uses what is called an Array of Structures (AoS)
● this is a typical pattern used in OO programming

● define individual, self contained objects
● allocate as many as needed in an array or vector

● an operation that accesses only a small part of the object is likely to exhibit poor locality
● leading to a poor use of the cache and of the memory bandwidth

● can we rearrange the data member to improve the locality ?
● even if we put all the x-related members together, the best use we could achieve is 21 / 64

● different operation likely access different combination of data members
● unlikely to find a layout that is optimal for all of them

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 39 / 52

Structure of Arrays

● the problem is inherent to the Array of Structure approach
● it is due to the encapsulation of the data members for a single object
● we want to process efficiently a collection of objects

● we need to design a data structure that is efficient for the whole collection

● Structure of Arrays (SoA)
● use an array for each data member
● store the first data member for the whole collection …
● … the the second data member for the whole collection …
● … and so on

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 40 / 52

struct GoodParticle {

 static int counter_;

 double x_, y_, z_;

 double px_, py_, pz_;

 bool hit_x_, hit_y_, hit_z_;

 float mass_;

 float energy_;

 const int id_;

 const std::string name_;

};

std::vector<GoodParticle> particles;

std::vector<GoodParticle>

double x_ double y_

double z_ double px_

double py_ double pz_

booleans float mass_ float energy_ const int id_

const std::string name_

double x_ double y_

double z_ double px_

double py_ double pz_

booleans float mass_ float energy_ const int id_

const std::string name_

double x_ double y_

double z_ double px_

double py_ double pz_

booleans float mass_ float energy_ const int id_

const std::string name_

double x_ double y_

double z_ double px_

double py_ double pz_

booleans float mass_ float energy_ const int id_

const std::string name_

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 41 / 52

struct ParticleSoA {

 int counter_;

 std::vector<double> x_, y_, z_;

 std::vector<double> px_, py_, pz_;

 std::vector<bool> hit_x_, hit_y_, hit_z_;

 std::vector<float> mass_;

 std::vector<float> energy_;

 std::vector<int> id_;

 std::vector<std::string> name_;

};

ParticleSoA

x_1 x_2

… x_N

y_1 y_2

… y_N

z_1 z_2

… z_N

px_1 px_2

… px_N

py_1 py_2

… py_N

pz_1 pz_2

… pz_N

name_1

name_2

…

name_N

id_1 id_2 … id_N

energy_1 energy_2 … energy_N

mass_2 …mass_1 mass_N

hit_x_ 1…Nhit_x_ 1…N hit_y_ 1…N hit_z_ 1…N

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 42 / 52

exercise

● write a function that takes as arguments
● a ParticleSoA object (by pointer, or reference)
● a boundary: double x_max
● a time interval: double t

● and
● update all positions xi = xi + pxi / massi * t

● if the updated xi is less than 0 or greater than x_max
– set hit_xi to true and change the sign of pxi

● else
– set hit_xi to false

● what memory access pattern are you using ?

x_1 x_2

… x_N

y_1 y_2

… y_N

z_1 z_2

… z_N

px_1 px_2

… px_N

py_1 py_2

… py_N

pz_1 pz_2

… pz_N

name_1

name_2

…

name_N

id_1 id_2 … id_N

energy_1 energy_2 … energy_N

mass_2 …mass_1 mass_N

hit_x_ 1…Nhit_x_ 1…N hit_y_ 1…N hit_z_ 1…N

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 43 / 52

looking further

● our ParticleSoA uses a separate std::vector for each “column”
● this is useful if we later decide to resize the whole SoA to hold a different number of

elements
● resizing requires allocating new memory, making copies of the contents of the vectors, etc.

● we can achieve better efficiency if we know the size in advance
● construct the vectors with the final size
● replace N vectors with a single memory buffer

● design a data structure that
● contains a single memory buffer and a single size
● contains N pointers, one to the beginning of each column
● has an explicit constructor that takes the size as its only argument, allocates enough memory to hold

all columns, and sets each pointer to the start of its column
● do not forget about the alignment of each column !

https://creativecommons.org/licenses/by-sa/4.0/

memory allocators

29-30 May, 2023 A. Bocci - Efficient memory management 45 / 52

alternative allocators

● by default, rely on the system allocator
● on Linux, this is the glibc memory allocator

● alternative allocators can provide
● different profiling and debugging tools
● depending on the workflow: faster execution, reduced memory usage, more stable performance

● TCMalloc
● Google's fast, multi-threaded, customized implementation of C's malloc() and C++'s operator new

● jemalloc
● a general purpose malloc() implementation that emphasizes fragmentation avoidance and scalable

concurrency support; used by FreeBSD, Facebook, Mozilla Firefox, etc.

https://sourceware.org/glibc/wiki/MallocInternals
https://github.com/google/tcmalloc
https://jemalloc.net/
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 46 / 52

a real world use case

● Taming memory fragmentation in Venice with Jemalloc
● by Zac Policzer, from the Linkedin Engineering Blog

● the Linux glibc system allocator exhibits a stack-like
pattern

● memory allocated sits “on top” of the earlier allocations
● if your program allocates and frees many objects

with different lifetimes, the allocator may not be
able to return the memory back to the OS

● jemalloc tries very hard to reduce memory
fragmentation and return memory back to the
operating system

● reduces “memory hoarding”
Exploiting the jemalloc Memory Allocator: Owning Firefox’s Heap
by Patroklos Argyroudis, Chariton Karamitas, at CENSUS Labs

https://engineering.linkedin.com/blog/2021/taming-memory-fragmentation-in-venice-with-jemalloc
https://census-labs.com/media/bhusa-2012-slides.pdf
https://census-labs.com/
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 47 / 52

a simple exercise on memory hoarding

● we can find a simple reproducer of the problem, from Zac’s blog post
● https://gist.github.com/ZacAttack/8c67b998c90afdb19c715dfe327112d2#file-heap-fragmentor-cpp
● can you get it to compile and run ?

● how to test with jemalloc
● link with jemalloc at compile time:

● use glibc allocator by default, and preload libjemalloc.so at runtime:

● what happens ?

● can we make this more realistic ?
● allocate and free many blocks
● randomise the allocation sizes

g++ -std=c++17 -O2 -g heap-fragmentor.cc -L PATH_TO_JEMALLOC -ljemalloc -o heap-fragmentor
./heap-fragmentor

g++ -std=c++17 -O2 -g heap-fragmentor.cc -o heap-fragmentor
LD_PRELOAD=PATH_TO_JEMALLOC/libjemalloc.so ./heap-fragmentor

https://gist.github.com/ZacAttack/8c67b998c90afdb19c715dfe327112d2#file-heap-fragmentor-cpp
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 48 / 52

a more complex exercise

● link to heap-fragmentor.cc on GitHub

 0 kB

 500 000 kB

 1 000 000 kB

 1 500 000 kB

 2 000 000 kB

 2 500 000 kB

 3 000 000 kB

 3 500 000 kB

 4 000 000 kB

 4 500 000 kB

 5 000 000 kB

glibc RSS

jemalloc RSS

https://github.com/infn-esc/sesame23/blob/main/hands-on/memory/memory_fragmentation/heap-fragmentor.cc
https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 49 / 52

a scientific use case

● CMSSW, the reconstruction software of the CMS Experiment, introduced multithreading in 2012
● this aggravated the effect of memory allocation patterns for which the glibc system allocator is not

optimal, leading to a high utilisation of system memory

reduce peak memory
usage by > 20%

added benefit: the
program runs faster !

https://creativecommons.org/licenses/by-sa/4.0/

29-30 May, 2023 A. Bocci - Efficient memory management 50 / 52

bibliography on allocators

● Exploiting the jemalloc Memory Allocator: Owning Firefox’s Heap
● by Patroklos Argyroudis, Chariton Karamitas, at CENSUS Labs

● Taming memory fragmentation in Venice with Jemalloc
● by Zac Policzer, from the Linkedin Engineering Blog

● The effect of switching to TCMalloc on RocksDB memory use
● by Dmitry Vorobev, from the Cloudflare Blog

● Reducing memory footprint using jemalloc
● by Vincenzo Innocente, at CERN

https://census-labs.com/media/bhusa-2012-slides.pdf
https://www.census-labs.com/
https://engineering.linkedin.com/blog/2021/taming-memory-fragmentation-in-venice-with-jemalloc
https://blog.cloudflare.com/the-effect-of-switching-to-tcmalloc-on-rocksdb-memory-use/
https://twiki.cern.ch/twiki/bin/view/LCG/VIJemalloc
https://creativecommons.org/licenses/by-sa/4.0/

(more) questions ?

