

disclaimer

A

disclaimer 0= L. RS

SESAME

this is my First time preparing and teaching this course, so your feedback is very welcome !

if we have extra time after covering all the material, I'll be happy to answer more questions,
Or propose more exercises

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

why memory ?

=\
W

=
NS

SESAME

memory refers to the storage used by a program to read and write data

a virtual memory OS can map different hardware to a single address space:

* system memory (usually DDR SDRAM), allocated with malloc() or new
« GPU memory: e.g. CUDA unified memory

« HBM memory: e.g. on the latest Xeon Max CPUs
* disk (SSD or HDD) areas: e.g. swap space or mmap()’ed Files

 ...andwhyisitimportant?

from the point of view of the CPU, most memory is slow

this is the single most important factor to consider to write efficient software

29-30 May, 2023

A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

2

N

SESAME

* modern CPUs (and GPUs) work at frequency of the order of the GHz
* datacentre CPUs: 2 GHz-4GHz
* datacentre GPUs: 1 GHz-2 GHz

* system memory is significantly slower
* with a latency of 200 ns, a CPU can perform 400 operations while waiting for data to arrive !

=
L1 cache 2ns 100 TB/s 64 kB / core Lg_ 5
L2 cache 6 ns 50 TB/s 512 kB / core ﬁ %
ir= b=y
[a))
>0 L3 cache 20 ns (?) 10 TB/s 4 MB / core 1-2 $/MB 20
c 3 Q e
% = HBM RAM 200 ns 2TB/s up to 80 GB / device 20-100 $/GB g
E 3 DDR RAM 200 ns 20-200 GB/s up to 64 GB / core 3-4 $/GB
v § - .
E _g - SSD 50-100 us 5 GB/s 30 TB /drive 100-200 $/TB
- mm HDD 2ms 300 MB/s 30 TB/drive 10-20 $/TB

based on the performance of an AMD Rome EPYC CPU, NVIDIA A100 GPU, and datacentre-grade SSDs and HDDs

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

2

-
/l\v'
SESAME
* can we write software that runs efficiently 0.06 _
despite the relatively high memory latency ? | T Hore Bandhwidth
0.05
m“’cﬁ HPC
* yes! oo
* from a paper by Intel engineers that analyses the 3 & it
performance of different software packages 3 0.3
E] More Latency
* Enterprise software is strongly affected by o Sensitive

memory latency Big Data —

: : NITS O irtualizati
* HPC software is mildly affected by latency, oot 0 o spark V'rt:a 'zat.'lon
being instead limited by memory bandwidth hmmer COre O L
Proximity + Bound Structured Data - Enterprise
000 +¥ 4 namd OLTP M Web Caching
SEil 5 0.00 0.10 0.20 0.30 0.40 0.50 0.60
A Blocking Factor

Quantifying the performance impact of memory latency and
bandwidth for big data workloads, 2015 IEEE International Symposium
on Workload Characterization, Russel M. Clapp et al, Intel Corporation
DOI:10.13140/RG.2.1.2677.2562

29-30 May, 2023 A. Bocci - Efficient memory management

http://dx.doi.org/10.13140/RG.2.1.2677.2562
https://creativecommons.org/licenses/by-sa/4.0/

WAL S Y
\ ’ ‘ % ‘-t"' __ L ,:t" 1 / /

SESAME

Data-oriented design
* exploit temporal data locality

- work as much as possible on data that has just been read or written to memory

- benefit from the data that is “hot” in the processor cache L, :_ . -

* exploit spatial data locality

- work as much as possible on adjacent data, to benefit from reading whole cache lings
- avoid pointers to pointers to pointers to ... |
- e.g. Array of Structures vs Structures of Arrays

* hide memory latency ;"_
- prefetch data in advance before it needs to be used, and work on previous data in
- keep the processor busy while more data is being fetched from memory
- acommon approach on GPUs, more complicated on CPUs

* avoid dynamic memory allocations

- when possible — definitely in your hot inner loops

* avoid costly high level abstraction ‘ UNREAL
» early adopters: video game development ENGINE

29-30 May, 2023 A. Bocci - Efficient memory management 8/52

https://en.wikipedia.org/wiki/Data-oriented_design
https://gamesfromwithin.com/data-oriented-design
https://creativecommons.org/licenses/by-sa/4.0/

c++ types and memory

A}
—~
NS

SESAME

* thesize of a type is the number of bytes required to store an object of that type

* thesize of a char, std: :byte and char8_t is always 1

* the size of a class type includes any additional padding and alignment requirements
* the size of a type can be queried with the sizeof() operator

type 32-bit mode 64-bit mode
sizeof(char) 1 bytes 1 bytes
sizeof(short) 2 bytes 2 bytes
sizeof(int) 4 bytes 4 bytes
sizeof(long) 4 bytes 8 bytes
sizeof(long long) 8 bytes 8 bytes
sizeof(__1nt128) n/a 16 bytes
sizeof(float) 4 bytes 4 bytes
sizeof(double) 8 bytes 8 bytes
sizeof(long double) 12 bytes 16 bytes
sizeof(void *) 4 bytes 8 bytes
sizeof(std::vector<int>) 12 bytes 24 bytes

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

2

N

SESAME

* alignment

* the alignment of a type is the number of bytes between successive addresses at which objects of this
type can be allocated

- e.g.ifatype has an alignment of 4, it can be allocated only every 4 bytes: 0x..00, 0x..04, 0x..08, 0x..0c, 0x..10, ...

* thealignment of a class type is the largest of the alignment of its members
- this guarantees that all data members are properly aligned

* the alignment of a type can be queried with the alignof() operator
« stricter alignment can be requested with the alignas() specifier
 alignmentis always a powerof 2:1, 2, 4, 8, 16, ...

e std::max_align_t
* atype with an alignment requirement as large as any scalar type
* alignof(std::max_align_t) returns the maximum alignment of any scalar type
* alignas(std::max_align_t) aligns a variable or type to the largest alignment of any scalar type

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

A

exercise SO e N

SESAME

* write a simple program that prints the size and alignment of various
* integer types: bool, char, short, int, long, ...
floating point types: float, double, long double

* pointers
- does the size and alignment of a pointer depend on the type it points to ?
e std::max_align_t
e arrays
- doesthe size and alignment of the array depend on the array element type ?
- doesthessize of the array include all of its content ?
* STL containers
- std::string, std::vector, etc.
- doesthe size of the container include all of its content ?
» user defined structures or classes
- try mixing types with different sizes and alignments

https://godbolt.org/z/MWGrwaqr5h

- tryusing the alignas() specifier

29-30 May, 2023 A. Bocci - Efficient memory management

https://godbolt.org/z/MWGrWqr5h
https://creativecommons.org/licenses/by-sa/4.0/

2

N

SESAME

* non-static data members are allocated so that the members declared later have higher
addresses within a class object

* upto C++20, the compiler can arrange the public and private data members in two separate groups
* thisis no longer the case starting from C++23

* additional padding may be necessary to properly align each data member

* my advice: group data members based on their size and alignment
* avoid padding, and reduce the overall object size

* my advice: group data member based on their usage
* if possible, Fit data that is used together within a single cache line (usually 64 bytes)

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

A

exercise i NS

SESAME

* how would you declare a class or struct for a Particle with these data member
* 1 const std::string to hold the particle’s name;
* 3doubles for the x, y, z velocities
* 3 bools to mark if there has been a collision along the x, y z directions
* 1 float for the mass
* 1 float for the energy
* 3 doubles for the x, y, z coordinates
* 1 const int for the particle’sid
1 static int to keep track of the total number of objects

* canyou fit all non-const datain a single cache line ?

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

A

exercise R NS

SESAME
struct BadParticle { struct GoodParticle {
static int counter_; // static: not part of the class layout static int counter_; // static: not part of the class layout
double x_, px_; double x_, v_, z_; // non-const data modified together
bool hit_x_; double px_, py_, PZ_;

bool hit_x_, hit_y_, hit_z_;
double y_, py_;
bool hit_y_; float mass_;
float energy_;
double z_, pz_;
bool hit_z_; const int id_;
const std::string name_; /] const: keep out of the hot data
float mass_; 1

float energy_;

const std::string name_; // const: keep out of the hot data

const int id_;

b
https://godbolt.org/z/zTP47zbdK

29-30 May, 2023 A. Bocci - Efficient memory management

https://godbolt.org/z/zTP47zbdK
https://creativecommons.org/licenses/by-sa/4.0/

memory primitives

A

basic memory operations)= 1| . WS

SESAME

* allocating and freeing a memory block
* dealing with alignment
 C++:memory allocation vs object construction
* C++: constructing an object in place

* filling or clearing a memory block

* copying the content of a memory block
e C++: trivial, standard-layout, and implicit-lifetime types

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

A

N

SESAME

e void* std::malloc(std::size t size);

allocate a block of memory of at least size bytes, with an alignment valid fFor all scalar types
return a pointer without any type information

return a null pointer is the allocation failed

the memory is not initialised, and no object is constructed in this memory (...)

the memory is not freed automatically

useful to get a buffer that will be immediately overwritten, or as a primitive for other operations

e void* std::calloc(std::size_t num, std::size t size);

similar to malloc()

allocate a block of memory for at least num elements of size bytes

the memory is initialised to zeros

this may be more efficient that calling malloc() and explicitly zeroing the memory

29-30 May, 2023 A. Bocci - Efficient memory management

https://en.cppreference.com/w/cpp/memory/c/malloc
https://en.cppreference.com/w/cpp/memory/c/calloc
https://creativecommons.org/licenses/by-sa/4.0/

A

dealing with alignmen ol NS

SESAME

 malloc() returns a pointer to a memory block suitably aligned for any scalar types
* usually, this means the alignment is 8 or 16 bytes
* can we get memory with a wider alignment ?
* for example, we may want memory aligned to a cache line size of 64 bytes

* void* std::aligned alloc(std::size_t alignment, std::size_t size);
* similar tomalloc(), allocate a block of memory of at least size bytes
 the memory bufferis aligned to at least alignment bytes

29-30 May, 2023 A. Bocci - Efficient memory management

https://en.cppreference.com/w/cpp/memory/c/aligned_alloc
https://creativecommons.org/licenses/by-sa/4.0/

A

N

SESAME

* to avoid memory leaks, the memory allocated by malloc(), calloc() or aligned_alloc()
must be deallocated with free()

e void std::free(void* ptr);
* frees a memory block obtained by malloc(), calloc() or aligned_alloc()
* the contents of the memory is not erased
* any objects in the memory are not destroyed

29-30 May, 2023 A. Bocci - Efficient memory management

https://en.cppreference.com/w/cpp/memory/c/free
https://creativecommons.org/licenses/by-sa/4.0/

2

) memory allocation vs object copstruction: <

SESAME

* in C++ creating an object involves two operations
* allocating some memory
* constructing an object in this memory

* in some cases we may want to separate these operations, for example...
* to allocate an object inside some special-purpose memory
* to dynamically create multiple objects or arrays of objects inside a single memory buffer

* in asimilar way, we can separate the destruction and deallocation of an objects:
* destroying an object in memory
* deallocating the memory

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

A

constructing objects - &= 1 . A&

SESAME

malloc() and similar functions return raw, uninitialised memory
* they do not construct any objects
* how can we construct C++ objects in this raw memory ?

e T* new(ptr) T{args..};
* use memory already allocated at address ptr
construct an object of type T using the constructor T::T(args..)

e T* new(ptr) T[N]{..};
* use memory already allocated at address ptr
* construct N objects of type T using the default constructor or the provided values

e T* std::construct_at(T* ptr, args..);
* sameasT* new(ptr) T{args..};
* requires C++20

29-30 May, 2023 A. Bocci - Efficient memory management

https://en.cppreference.com/w/cpp/language/new#Placement_new
https://en.cppreference.com/w/cpp/language/new#Placement_new
https://en.cppreference.com/w/cpp/memory/construct_at
https://creativecommons.org/licenses/by-sa/4.0/

._s\;
—
N

SESAME

* before deallocating (or reusing) some memory, we must destroy the objects that we
have created there

* std::destroy at(T* ptr);
* calls the destructor of the object of type T at the memory address ptr
* equivalentto ptr->~T()

* std::destroy n(T* ptr, std::size_t n);
» calls the destructor of the n objects of type T starting at the memory address ptr
 equivalentto for (; n > 0; ++ptr, --n) ptr->~T()
* (actually, this Function takes an Iterator, not a pointer)

e std::destroy(T* first, T* last);
* calls the destructor of the objects of type T in the range [first, last)

29-30 May, 2023 A. Bocci - Efficient memory management

https://en.cppreference.com/w/cpp/memory/destroy_at
https://en.cppreference.com/w/cpp/memory/destroy_n
https://en.cppreference.com/w/cpp/memory/destroy
https://creativecommons.org/licenses/by-sa/4.0/

A

N

SESAME

* void* std::memset(void* dest, int ch, std::size t count);
* writes the byte value of ch to count bytes starting at the address dest
* take care not to overflow the buffer!

e void* std::memcpy(void* dest, const void* src, std::size_t count);
* copies count bytes from src to dest
* the two buffers must not overlap !

e void* std::memmove(void* dest, const void* src, std::size_t count);
* copies count bytes from src to dest
* the two buffers may overlap

29-30 May, 2023 A. Bocci - Efficient memory management

https://en.cppreference.com/w/cpp/string/byte/memset
https://en.cppreference.com/w/cpp/string/byte/memcpy
https://en.cppreference.com/w/cpp/string/byte/memmove
https://creativecommons.org/licenses/by-sa/4.0/

A

N

SESAME

e creating, copying, moving, and destroying C++ objects calls special member Functions
* constructors

* copy and move constructors
* copy and move assignments
* destructor

* exercise
 what happens if you use std: :memcpy to make a copy of an std: :string?
* did it really make a copy of the object ?

* ifyou modify either of the old or new objects, what happens to the other one ?
* whatis happening?

29-30 May, 2023 A. Bocci - Efficient memory management

https://godbolt.org/z/draffTdj6
https://creativecommons.org/licenses/by-sa/4.0/

A

“efficient” C++ types- . N

SESAME

creating, copying, moving, and destroying C++ objects calls special member functions
* constructors
* copy and move constructors
* copy and move assignments
* destructor

this is extremely useful to guarantee the correctness of the application

 but...

* sometimes we may want to avoid to achieve higher efficiency
 sometimes it may not be possible to call these special functions (e.g. copy an object to GPU memory)

trivial and implicit-lifetime types

29-30 May, 2023 A. Bocci - Efficient memory management

https://en.cppreference.com/w/cpp/language/classes#Trivial_class
https://en.cppreference.com/w/cpp/language/classes#Implicit-lifetime_class
https://creativecommons.org/licenses/by-sa/4.0/

A

trivialtypes . NS

SESAME

 trivially copyable types
* have compiler-defined or defaulted copy and move constructors, and destructor
* have no virtual member functions and no virtual base classes
* may have different access specifier (public, private, etc.)

* can be copied and destructed without calling any special member functions
e can be copied with std: :memcpy() or std: :memmove()
* can be implicitly destructed when deallocating memory

* [rivial types, in addition
* have compiler-defined or defaulted default constructor, and no default initialisers

29-30 May, 2023 A. Bocci - Efficient memory management

https://en.cppreference.com/w/cpp/language/classes#Trivial_class
https://en.cppreference.com/w/cpp/language/classes#Trivially_copyable_class
https://en.cppreference.com/w/cpp/language/classes#Trivial_class
https://creativecommons.org/licenses/by-sa/4.0/

A

N

SESAME

* implicit-lifetime types
» are scalars or aggregates (arrays or simple class/structs)
* have a trivial default constructor and destructor
* have no private or protected (non-static) data members and base classes
* have no virtual member functions

* can be implicitly constructed when allocating memory
* without the need to call any constructor

29-30 May, 2023 A. Bocci - Efficient memory management

https://en.cppreference.com/w/cpp/language/classes#Implicit-lifetime_class
https://en.cppreference.com/w/cpp/language/classes#Implicit-lifetime_class
https://creativecommons.org/licenses/by-sa/4.0/

A

exercise COEE . NS

SESAME

* canyou declare a class type thatis
e trivially copyable
* has animplicit lifetime

* suggestion
e usethestd::is_trivially_copyable_v<T>and std::is_implicit_lifetime_v<T> type traits to check!

29-30 May, 2023 A. Bocci - Efficient memory management

https://en.cppreference.com/w/cpp/types/is_trivially_copyable
https://en.cppreference.com/w/cpp/types/is_implicit_lifetime
https://creativecommons.org/licenses/by-sa/4.0/

optimising memory access

R ° ° ° f N . /
o optimising memory access: v WS

SESAME

» efficient data processing depends on
* data structures
» data access patterns

* should be designed together to minimise memory latency and maximise throughput
* maximise locality
* minimise wasted memory access

°* Mmemory access patterns
* sequentialaccess < good on CPUs, because of the serial execution, not so good on GPUs
» strided access < good on GPUs, because of the implicit parallelism, not so good on CPUs
» other special cases for 2D, 3D, etc. loops
* random access < bad everywhere

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

A

N

SESAME

A gk, AR A TA A TA

° Xo X1 X2 X3 Xi | Xivr | Xi+2

» sequential access: elements are accessed consecutively

* good use of the prefetcher

* good cache locality, good utilisation of the memory bandwidth

* consecutive memory areas can be read for each cycle: coalesced memory access

o 2 Wl S RS e

L X3 X2 Xo X1

 random access: elements are access in arbitrary order

* impossible to prefetch next access

* bad cache locality, bad utilisation of the memory bandwidth
 donotdothis!

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

._s\;
—
N

SESAME

° Xi o | Xitk | e we | X442k

» strided access: elements are accessed at fixed intervals
* good use of the prefetcher
* on CPUs: cache locality and memory bandwidth utilisation depend on the stride

- stride << cache line size: partial usage (1/ stride)
- stride = cache line size: bad utilisation

° Xi | Xier | Xi2 | Xis3 | Xivk Xitk+1 Xisk+2Xi+k+3 Xi+2k

* on GPUs: good use of cache locality and memory bandwidth if the stride equal the grid size
* consecutive memory areas can be read for each cycle: coalesced memory access

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

A

GoodParticle O iliE . N

SESAME

struct GoodParticle { double x_ double y_

static int counter_;

- double z_ double px_
double x_, y_, z_; double py_ double pz_
double px_, py_, pz_; bokl | ’ ‘ f1 £l d
eans oat mass oat ener const int 1
bool hit_x_, hit .y , hit z_; - L= i e
float mass._; const std::string name_

float energy_;

const int id_;
const std::string name_;

s

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

A

exercise Ol NS

SESAME

» write a function that takes as arguments
» acollection of GoodParticle objects (by pointers, iterators, or reference)
* aboundary: double x_max
* atimeinterval: double t

* and
* iterates over the collection of GoodParticle objects
* foreach object
— update the position x = x + px / mass * t
- ifthe updated x is less than 0 or greater than x_max

* sethit_xto true and change the sign of px
- else

* sethit_xto false

* what memory access pattern are you using ?

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

2

stridedaccess =0zl . ARE

SESAME
struct GoodParticle { le x_ double y_
static int counter_;
- qQEQle/z:T’””"AA**‘:::::§§§\;,double PX_
double x_, y_, z_; double py_ double pz_
double px_, Py, Pz *baoleans | — | >float £l d
eans —>float mass oat ener const int 1
bool hit_x_, hit .y , hit z_; = L= -
float mass._; const std::string name_

float energy_;

L. £—~——____4$uﬂﬂfagglx\\‘ double y_
const int id_;
const std::string name_; d?EPLE/Z:/””Fgggﬁ“:::1§§\\; double px_

double py_ double pz_

s

std: :vector<GoodParticle> particles; bopleans —~float mass_ float energy_ | const int id_

const std::string name_

29-30 May, 2023

https://creativecommons.org/licenses/by-sa/4.0/

A

how efficientisit? -0 15 . A&

SESAME

this is a strided access
* aGoodParticle has a size of 96 bytes
* our example accesses only a few members from each GoodParticle object

while reading consecutive GoodParticle objects
 we read all 96 bytes into the cache

 we access only 21 bytes
- x(double, 8 bytes), px (double, 8 bytes), mass (float, 4 bytes) and x_hit (bool, 1 byte) = 21 bytes

we actually use less than 25% of the memory that we read!

* how can we change the data structure to improve the locality and bandwidth utilisation ?

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

2

N

SESAME

* our current approach uses what is called an Array of Structures (AoS)

* thisis a typical pattern used in OO programming
* define individual, self contained objects
* allocate as many as needed in an array or vector

an operation that accesses only a small part of the object is likely to exhibit poor locality
* leading to a poor use of the cache and of the memory bandwidth

* can we rearrange the data member to improve the locality ?
* even if we put all the x-related members together, the best use we could achieve is 21 / 64

different operation likely access different combination of data members
* unlikely to find a layout that is optimal for all of them

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

A

N

SESAME

* the problem is inherent to the Array of Structure approach
* jtis due to the encapsulation of the data members for a single object
* we want to process efficiently a collection of objects

* we need to design a data structure that is efficient for the whole collection

* Structure of Arrays (SoA)
e use an array for each data member
* store the first data member for the whole collection ...
* ...thethe second data member for the whole collection ...
« ...andsoon

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

A

N

e A 1 SESAME

struct GoodParticle { double x_ double y_
N . double z_ double px_
static int counter_;
- double py_ double pz_
b+1e+s | | float mass_ float energy_ | const int id_
double x_, vy, z_; : .
- - - : const std::string name_ .
double px_, py_, pz_; 3
double x_ double y_
bool hit_x_, hit .y , hit z_ Youble 2| R
double py_ double pz_
| | float mass_ float energy_ | const int id_
mass_; }]
energy_; E const std::string name_ i
double x_ double y_
. o double z_ double px_
int id_;
double py_ double pz_
Std: . Stl'"l.ng name_ | | float mass_ float energy_ | const int id_
E const std::string name_ 3
std: :vector<GoodParticle> particles; ouble x. gouble v
double z_ double px_
double py_ double pz_
+s | | float mass_ float energy_ | const int id_
: const std::string name_ 3

29-30 May, 2023 A. Bocci - Efficient me

https://creativecommons.org/licenses/by-sa/4.0/

A

ParticleSoA ol 1<

SESAME
struct ParticleSoA { x_1 x_2
. _N
int counter_; -
y_1 y_2
y_N
std::vector<double> x_, y_, z_; 21 22
std::vector<double> px_, py_, pz_; .
px_1 px_2
std::vector<bool> hit_x_, hit.y , hit z_; g
py_1 py_2
std: :vector<float> mass_; el
pz_1 pz_2
std::vector<float> energy_; b2 N
h'ltl_x_ |1N | hiiy_ -I1N-| hiiz_]l...N]

Std: :Vect0r<:l,nt> '.Ld_; 1 mass_1 mass_2 mass_N

energy_1 energy_2 energy_N

std::vector<std::string> name_; 1d.1 1d.2 1dN

}; E name_1 E
name_2 E

29-30 May, 2023 A. Bocci - Efficient me

https://creativecommons.org/licenses/by-sa/4.0/

exercise

» write a function that takes as arguments
* a ParticleSoA object (by pointer, or reference)

* aboundary: double x_max

e atimeinterval: double t

* and

* update all positions xi = xi + pxi / mass; * t

* ifthe updated x; is less than 0 or greater than x_max
- sethit_x; to true and change the sign of px;

e else

- sethit_x; to false

 what memory access pattern are you using ?

2

N

SESAME

x_2

x_N

y_2

y_N

z_2

z_N

px_2

px_N

py_1

py_2

py_N

pz_1

pz_2

pz_N

h{;[;:iﬁtﬁ/[‘

mass_1

mass_2

mass_N

energy_1

energy_2

energy N

id_1

id_2

id_N

name_1

name_2

29-30 May, 2023

A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

2

looking further NS

SESAME

* our ParticleSoA uses a separate std: :vector for each “column”
e thisis useful if we later decide to resize the whole SoA to hold a different number of
elements
* resizing requires allocating new memory, making copies of the contents of the vectors, etc.

* we can achieve better efficiency if we know the size in advance
* construct the vectors with the final size
* replace N vectors with a single memory buffer

* design a data structure that
* contains a single memory buffer and a single size
* contains N pointers, one to the beginning of each column

* has an explicit constructor that takes the size as its only argument, allocates enough memory to hold
all columns, and sets each pointer to the start of its column

* do not forget about the alignment of each column'!

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

memory allocators

._s\;
—
N

SESAME

by default, rely on the system allocator
* on Linux, this is the glibc memory allocator

alternative allocators can provide
» different profiling and debugging tools
* depending on the workflow: faster execution, reduced memory usage, more stable performance

TCMalloc
* Google's fast, multi-threaded, customized implementation of C's malloc() and C++'s operator new

jemalloc

* ageneral purpose malloc() implementation that emphasizes fragmentation avoidance and scalable
concurrency support; used by FreeBSD, Facebook, Mozilla Firefox, etc.

29-30 May, 2023 A. Bocci - Efficient memory management

https://sourceware.org/glibc/wiki/MallocInternals
https://github.com/google/tcmalloc
https://jemalloc.net/
https://creativecommons.org/licenses/by-sa/4.0/

A

N

SESAME

mmap()

« Taming memory fragmentation in Venice with Jemalloc s e
* by Zac Policzer, from the Linkedfg] Engineering Blog I

[brko

::::::::::

* the Linux glibc system allocator exhibits a stack-like w |
patkepm®: " W[/, — ' [- k&gl -

 memory allocated sits “on top” of the earlier allocations

* ifyour program allocates and frees many objects
with different lifetimes, the allocator may not be
able to return the memory back to the OS

 jemalloc tries very hard to reduce memory a~alll=~=slllsa=|~e=
fragmentation and return memory back to the JiEE

Ppetatigasystery e e g

« reduces “memory hoarding”

Exp/ofitﬂin%the Jjemalloc Memory Ailocator: Owning Firefox’s Heap

by Patrokios Argyroudis, Chariton Raramitas, at CENSUS Labs

29-30 May, 2023 A. Bocci - Efficient memory management

https://engineering.linkedin.com/blog/2021/taming-memory-fragmentation-in-venice-with-jemalloc
https://census-labs.com/media/bhusa-2012-slides.pdf
https://census-labs.com/
https://creativecommons.org/licenses/by-sa/4.0/

A

N

SESAME

« we can find a simple reproducer of the problem, from Zac's blog post
* https://qgist.github.com/ZacAttack/8c67b998c90afdb19¢c715dfe327112d2#file-heap-fragmentor-cpp
* canyou getittocompileandrun?

* how to test with jemalloc
* link with jemalloc at compile time:

g++ -std=c++17 -02 -g heap-fragmentor.cc -L PATH_TO_JEMALLOC -ljemalloc -o heap-fragmentor
./heap-fragmentor

* use glibc allocator by default, and preload libjemalloc.so at runtime:

g++ -std=c++17 -02 -g heap-fragmentor.cc -o heap-fragmentor
LD _PRELOAD=PATH_TO_ JEMALLOC/libjemalloc.so ./heap-fragmentor

« what happens?

* can we make this more realistic ?
* allocate and free many blocks
* randomise the allocation sizes

29-30 May, 2023 A. Bocci - Efficient memory management

https://gist.github.com/ZacAttack/8c67b998c90afdb19c715dfe327112d2#file-heap-fragmentor-cpp
https://creativecommons.org/licenses/by-sa/4.0/

A

N

SESAME

* link to heap-fragmentor.cc on GitHub

5 000 000 kB
4 500 000 kB
4 000 000 kB
3 500 000 kB

3 000 000 kB

2 500 000 kB m — glibc RSS

—— jemalloc RSS
2 000 000 kB H[T

1 500 000 kB H
1 000 000 kB F F ' ﬂ

500 000 kB

gy U | I

°]
T

29-30 May, 2023 A. Bocci - Efficient memory management

https://github.com/infn-esc/sesame23/blob/main/hands-on/memory/memory_fragmentation/heap-fragmentor.cc
https://creativecommons.org/licenses/by-sa/4.0/

A

N

SESAME

* CMSSW, the reconstruction software of the CMS Experiment, introduced multithreading in 2012

» this aggravated the effect of memory allocation patterns for which the glibc system allocator is not
optimal, leading to a high utilisation of system memory

A
e e I R S E RS RS R =S S e e PR T - -
16000000 W i
RS eeSt
s y y reduce peak memory
%
usage by >20%
n
B e e e eSS 1
=, -, e a e a .
e PO added benefit: the
00000 X g
WWMMWWV F t '
- program runs faster!
P ol
p
1000000 ,‘4
e
N
~¢’
2w
——
pll - std pss
= ctd rss
2000000 jmie pss
)_ a2
o B

29-30 May, 2023 A. Bocci - Efficient memory management

https://creativecommons.org/licenses/by-sa/4.0/

NS

SESAME

* Exploiting the jemalloc Memory Allocator: Owning Firefox's Heap
* by Patroklos Argyroudis, Chariton Karamitas, at CENSUS Labs

 Taming memory fragmentation in Venice with Jemalloc
* by Zac Policzer, from the Linkedfg] Engineering Blog

* The effect of switching to TCMalloc on RocksDB memory use
* by Dmitry Vorobev, from the Cloudflare Blog

 Reducing memory footprint using jemalloc
* by Vincenzo Innocente, at CERN

29-30 May, 2023 A. Bocci - Efficient memory management

https://census-labs.com/media/bhusa-2012-slides.pdf
https://www.census-labs.com/
https://engineering.linkedin.com/blog/2021/taming-memory-fragmentation-in-venice-with-jemalloc
https://blog.cloudflare.com/the-effect-of-switching-to-tcmalloc-on-rocksdb-memory-use/
https://twiki.cern.ch/twiki/bin/view/LCG/VIJemalloc
https://creativecommons.org/licenses/by-sa/4.0/

(more) questions ?

