

Microtomography Beamline for Science, Engineering and Industry

Fareeha Hameed

<u>BEATS</u> Beamline Scientist Synchrotron-light for Experimental Science and Applications in the Middle East E-Mail: <u>fareeha.hameed@sesame.org.jo</u> https://www.sesame.org.jo/beamlines/beats

OUTLINE

- BEATS beamline description and specifications
- Detection systems available at BEATS
- Modes of imaging available at BEATS
- Experiment design
- Data acquisition
- Introduction of the reconstruction tools at BEATS
- Introduction to ImageJ/Fiji
- Beamtime preparation bring enough storage memory
- Suitable sample size, shape
- Some results from previous experiments

SESAME

SYNCHROTRON-LIGHT FOR EXPERIMENTAL SCIENCE AND APPLICATIONS IN THE MIDDLE EAST

BEAmline for **T**omography at **S**ESAME (BEATS)

- Hard X-ray full-field radiography and micro-CT station
- Layout based on TOMCAT (Swiss Light Source)
- Funded by the EU's Horizon 2020 program
- First received general users in 2024
- Monochromatic energy: 8 50 keV
- A state-of-the-art computing infrastructure for data collection, threedimensional (3D) image reconstruction and data analysis
- Adjustable propagation distance between sample and detectors

ID10 – BEATS (BEAmline for Tomography at SESAME) beamline

Advantages over laboratory-based X-ray systems

- Greater brilliance of X-ray source
- High photon flux on small sample area enables short acquisition time and time-resolved scans
- Superior contrast and image quality
- Higher spatial resolution
- Higher sensitivity to light elements (2-3 orders of magnitude)
- Superior signal-to-noise ratio

BEATS tomography endstation

Advantages of synchrotron radiation

View of the tomography sample manipulator

ID10 – BEATS (BEAmline for Tomography at SESAME) beamline

Detectors

	DETECTOR 1	DETECTOR 2	DETECTOR 3
Туре	White-beam medium resolution detector	White-beam Twin microscope	Monochromatic microscope
Manufacturer	ESRF (France)	Optique Peter (France)	Optique Peter (France)
Lens type	Hasselblad H system	Mitutoyo M Plan Apo(Radiation hardened)	Olympus PLAPO/UPLAPO
Magnification	0.5×; 1×; 2×	5×; 7.5×; 10×	10×; 20×
Available voxel size (with PCO edge 5.5)	13 – 3.25 µm	1.3 – 0.65 μm	0.65 – 0.33 μm

The DMM allows to select a photon energy between 8 and 50 keV

Max Flux On Sample 4.8 * 10¹³ [ph/s] @ 20 [keV]

Dr. Fareeha Hameed

ID10 – BEATS (BEAmline for Tomography at SESAME) beamline

	CAMERA 1	CAMERA 2
Sensor type	sCMOS - Mono	CMOS - Mono
Manufacturer	PCO (Germany)	Teledyne FLIR (US)
Model	edge 5.5	Oryx 10GigE
Megapixels	5.5	7.1
Sensor size	2560 × 2160	3208 × 2200
Pixel size	6.5 µm	4.5 µm
Max frame rate (full frame)	100 fps	112 fps
Shutter	Rolling / Global	Global
Exposure time	500 μs - 2 s	10 µs - 30 s
Bit-depth	16 bit	8 bit / 16 bit
ADC	16 bit	8 bit / 10 bit / 12 bit
Dynamic range	88.6 dB	71.7 dB

	Detector 1	Detector 2	Detector 3
Туре	White-beam microscope	White-beam microscope	Monochromatic microscope
Magnification	0.5x, 1x, 2x	5x, 7.5x, 10x	10x, 20x
Available pixel size	13 -3.25 μm	1.3 – 0.65 μm	0.65 – 0.33 μm
Field of view	34 x 29 mm 7.9 x 6.7 mm	3 x 2.8 mm 1.7 x 1.4 mm	1.7 x 1.4 mm 0.8 x 0.7 mm

Reconstruction for datasets

Test dataset	Dataset 1	Dataset 2	Dataset 3
Sinogram shape	1376×1000×1000	2560×1000×1000	4371×1000×2000
Raw data size (16-bit)	6.0 GB	28.2 GB	42.3 GB
Reconstruction shape	1376×1376×1000	2560×2560×1000	4371×4371×1000
Reconstruction size (32-bit)	7.6 GB	26.2 GB	76.4 GB
Gridrec			
FBP CUDA			

TECHNIQUES AND MODES

- Radiographic (absorption) imaging
- Phase-contrast XCT
- Absorption-Edge Subtraction Imaging
- Dynamic In situ experiments
- Monochromatic
- White Beam/Pink Beam

A brief introduction to phase contrast (PC) X-ray imaging

- Conventional X-ray imaging / CT measures decreases in Xray intensity as the beam crosses a sample
- $\psi_{out}(x,y)$ PC imaging instead Detector measures the beam's K-ray source phase shift S Sample n(x, y, z)Z Object plane $k_{out}(x, y)$ Source-to-sample distance Sample-to-detector distance X-Ray Phase-Contrast Tomography, Springer, 2020 15

SESAME

Attenuation contrast CT

Beer–Lambert's law:

Interaction of X-rays with matter

- Several contrast modes are possible
- When X-ray wave passes through an object
- both the intensity and the phase change vary according to the refractive index, n:

$$n = 1 - \delta + i\beta$$

- imaginary part (β) controls the attenuation (absorption) and the real part (δ) the phase shift
- The linear attenuation coefficient, μ , expresses the attenuation of X-rays as they pass through the material and is given by $4\pi \beta/\lambda$

PC imaging improves spatial resolution

Small calcifications are better resolved using PC

PC imaging improves resolution of fibrous detail

The Method of Filtered Backprojection

SESAME

Principle of tomographic projection

SESAME

Tomographic Reconstruction with filtered backprojection:

a) Calculation of the projection data.

b) +c) each projection defines a line in Fourier space.

d) Ideal occupation of the Fourier space in the limit of a large number of projections.

e) The high-frequency part from the backprojection is amplified.

Backprojection reconstruction method for a single slice obtained by parallel beam computed tomography.

a | Original object slice (a human head where the highly attenuating features are brightest). **b** | Set of projections collected at different angles. **c** | Sinogram resulting from many projections. **d** | Process of backprojecting the sinogram. **e** | Final Backprojected image. **f** | Equivalent filtered backprojection image. Note that with fewer projections, the image quality would decrease. ϑ , projection angle. Parts **a** and **b** images courtesy of Andrew Ciscel. Part d image courtesy of Samuli Siltanen e Backprojected Filtered slice

backprojected slice

Segmentation processes for an idealized sample

- **a** | Reconstructed tomographic slice showing different phases according to the grey levels.
- **b** | Greyscale histogram of the volume with the segmentation ranges used to segment the phases.
- **c** | Segmented slice showing the segmented regions.

d | Three- dimensional (3D) rendering of the segmented objects with the matrix phase rendered semi- transparent. Bottom row adapted

NATURE REVIEWS | METhodS PRIMERS | Article citation ID: (2021) 1:18 2022 Philip Withers

Segmentation processes for a gravel filter pack

Segmentation processes for an for a filter pack for wetland water treatment recorded as 8- bit images.

- **a** | Reconstructed tomographic slice showing different phases according to the grey levels.
- **b** | Greyscale histogram of the volume with the segmentation ranges used to segment the phases.
- **c** | Segmented slice showing the segmented regions.

d | Three- dimensional (3D) rendering of the segmented objects with the matrix phase rendered semi- transparent. Bottom row adapted

BEAmline for Tomography at SESAME

Funded by the EU's H2020 framework programme under grant agreement n°822535

THE CYPRUS INSTITUTE

******E=C*C*N010010844400

ALBA

DESY.

Elettra Sincrotrone Trieste

ESK

Europeia functio

PAUL SCHERRER INSTITUT

SESAME

INFN

SOLARIS NATIONAL SYNCHROTRON RADIATION CENTRE

BEATS

Proposals

BEAmline for Tomography at SESAME

Funded by the EU's H2020 framework programme under grant agreement n°822535

Semester	Submitted	Approved	Approval %age	Shifts	
SEM 6	23	17	74	156	
SEM 7	28	18	64	144	
SEM 8	23			153	shifts requested

Fareeha Hameed

28

BEAmline for Tomography at SESAME

Funded by the EU's H2020 framework programme under grant agreement n°822535

- MPS material and physical sciences
- AHS archaeological and heritage science
- Industry

Countries

SESAME

30

The European Synchrolion

スン

SESAME

BEAmline for Tomography at SESAME

Funded by the EU's H2020 framework programme under grant agreement n°822535

RECENT USER ACTIVITIES

- 3 groups successfully performed beamtime (July) Cyprus (Life Sciences) Italy (MPS) Turkey (in situ) (MPS)
- 3 groups have successfully performed beamtime (October) Nigeria (MPS) Qatar (in situ) (MPS) Turkey (in situ) (MPS)
- Dec Feb
 - Turkey AHS Jordan – 2 groups - Life Sciences
 - Iran Life Sciences
 - Iran AHS

1. SETUP CONTROL STATION

2. CHANGE THE BEAMLINE ENERGY

3. STREAM DETECTOR DATA

4. BEAMLINE SETUP

6. SILX – CHECK THE PROJECTIONS

7. RECONSTRUCTION

8. CONVERT TO 8 BIT

SESAME

9. IMAGE J – BINARY IMAGE

https://henke.lbl.gov/optical_constants/

Filter Transmission: data file here

Print

Si3N4 Density=3.44 Thickness=0.2 microns

Index of Refraction = (1-delta)-i(beta)

SESAME

SESAME

71/2

Taurausk	tomo	Scan.adl	_ 0	×	
ronograph	ig i continuous scan i Data L	ollection tomoscanBEATS:Flir	licosCont:		
Epics PV names	D Reamline-specif	etup			
	Rotatio	ou	<u>Q</u>		
Start angle 0.000 Angle step 0.045	* of angles Stop angle	4001 Return 180,000 Return	to start		
	Flat Fie	ld Control			
X in 0,000 X out 18,000	Y in 0.000 Y out 0.000	Use angle No Angle 0.000	Move Sample In		
<pre># Flat fields 101 Flat field axis</pre>	Flat value	Collect	flat fields Start		
	Dark Fie	Id Control	<u> </u>		
* Dark fields 101	Dark value	Collect dark fields	Start -		
File directory //F	File C ETRR/SED/DEATS/1H/2024/form2_	Control Aptil m.pinktime(Spum) inm_Opt(Ois	180des-20241120T140030		
Dase file name	an2_4pt5um_pirkC5mmC5mmAl1mm_ Data Co	Aptuols_180deg			
Exposure time	91 - Start Scan	Horri Scan Statu	s da vera		
Scan status ()	Sta	tus			
Images collected 40 Overall saved images 0	001/4001				
Elapsed time of Remaining time of	:01:07				
Ruthon comun					

SILX

Sib: viewer

Fiji and ImageJ

- Artifacts COR •
- **Ring removal**
- 8-bit conversion
- Comparison of absorption and phase contrast images •
- Cropping
- Noise filtering
- Segmentation binary
- Analysis measurements
- Skeleton

Keyframes animation PD: 11,00120 mm Ikange Min: 0 Max: 255

foam2_slices1to500_equalized
0.00 31.88 63.75 95.62 127.50 159.38 191.25 223.12 255.00

7

ATES Mehmet Nurullah, ALTIN Serdar, KUCUKKOYLU Sedat, , NASIROV Hasan, Turkey

Turkey, Bogazici University, Inonu University, TUBITAK The Scientific and Technological Research Institution of Turkey, Eskisehir Technical University

SESAME

Absorption Edge Sensitive Radiography and Tomography of Egyptian Papyri

Graphical abstract

a) Recto and b) verso side of fragment "AMP B/H x 133g", c) recto and d) verso side of fragment "AMP B/H x 352". All pictures were taken by T. Siopi (AMP)

Fragment "AMP B/H x 352". a) Photo of the fragment with marked area that is enlarged in b) and indication of the Raman measurement's spots (R) and the sampling spot (P). Subfigures b)-e) show the same area. c) XRF mapping for Pb. d) Transmission radiography and e) absorption edge radiography at Pb₁₃edge with enlarged cutout

An energy of 19 keV was chosen for standard radiographic measurements while 7.0 keV and 7.2 keV (Fig. 3b) and 12.90 keV and 13.15 keV were chosen for measurements at the absorption edges of Fe (K-edge) and of Pb (L23 -edge), respectively.

With the versatile detector system, different magnification optics can be combined with different CCD cameras and scintillator screens.

For the pre- sented work, a 20-m thick CWO 4 scintillator was combined with a 10-fold magnification optics and a pco4000 CCD camera, resulting in a pixel size of 440 nm

Toda, Hiroyuki. "X-Ray CT." (2021).

BEATS Highlights

Phase-Contrast Synchrotron Tomography of Faience and Egyptian Blue

https://www.sesame.org.jo/news/synchrotron-x-ray-phase-contrast-microtomography-faiencebeads-and-egyptian-blue-pigment

Dardeniz, G., Büyükgedik, G., Kaya, O., Özkorucuklu, S., Hameed, F., & Iori, G. (2025). Synchrotron computed tomography of 5000 years old faience beads from Southeastern Anatolia (Türkiye). *Tomography of Materials and Structures*, *7*, 100056.

Dardeniz, G., Büyükgedik, G., Kaya, O., Özkorucuklu, S., Hameed, F., & Iori, G. (2025). Synchrotron computed tomography of 5000 years old faience beads from Southeastern Anatolia (Türkiye). *Tomography of Materials and Structures*, *7*, 100056.

SESAME

- Very beneficial for archaeology and cultural heritage
- Non-destructive
- Qualitative as well as quantitative

Conclusions

- Successful functioning of the BEATS beamline
- Proposals from several different countries
- Beamtimes performed for two semesters
- 3rd semester now in progress
- Next call for proposals will be announced soon
- Website for dates/deadlines, new activities, and highlights

https://www.sesame.org.jo/beamlines/beats

ACKNOWLEDGEMENTS

AND

THANKS

fareeha.hameed@sesame.org.jo

https://www.sesame.org.jo/beamlines/beats

