

HERE & CALL

In situ and *Operando* XAS characterization of Functional Materials

Anthony Beauvois

*anthony.beauvois@synchrotron-soleil.fr

ON-LINE TRAINING 29 APRIL 2025

What is needed for operando characterization using XAS?

Cells able to reproduce real reaction conditions

Qualitative and Quantitative access to the material activity

Complementary Methods for simultaneous Characterization

Large dataset analysis methodology

I. Examples of *in situ/operando* setups

Catalysis (thermal catalysis, (photo)-(electro)-catalysis)

Energy storage Liquid cells

II. Multimodal characterisations and data analysis methodology

III. Scientific case: LDH used for Ethanol Stream Reforming

IV. Conclusions

What is needed for operando characterization using XAS?

Large dataset analysis methodology

Gas distribution system & products analysis

Gas distribution system

Ventilated cabinet for safety with dangerous gases

- Complex mixtures
- Saturator for liquid reactants
- Heated lines (120°C)
- $P_{atm} \rightarrow 20 bar$
- Remote control

- Saturator for liquid reactants
- Fast switching between gases
- P_{atm}
- Remote control

+ Welcome of users'

Gas distribution system & products analysis

Products analysis

Mass Spectrometer

sinks Cirrus

Micro-GC

What is needed for operando characterization using XAS?

X

Large dataset analysis methodology

What is a good cells for gas-phase operando catalysis?

PACKED BED REACTOR

Pellet

for catalysis

Cavity

Lytle-type cell

Lytle et al., J. Chem. Phys., 1979, **70**, 4849

Ravel *et al., Nim B*, 1999, **183** Girardon *et al., J. Synch. Rad.*, 2005, **12**, 680 Kawai *et al., Rev. Sc. Ins.*, 2008, **79**, 1

Good compromise

PLUG-FLOW REACTOR

Capillary

In situ and Operando XAS characterization of Functional Materials | April 29, 2025 | A. Beauvois 🕴 9

Home-made cell for versatile characterization

La Fontaine et al., Cat. Today, 2013, 205, 148-158

In situ and Operando XAS characterization of Functional Materials | April 29, 2025 | A. Beauvois 10

Pressure	1 bar
Sample	Powdered catalyst gently pressed in the cavity
XAS measure	Fluorescence + Transmission
Multimodal	XRD, Raman

Commercial cell from Harrick®

Chemical composition of the cell using X-ray fluorescence

Temperature	Room temp. → 500°C
Pressure	1→3 bar
Sample	Powdered catalyst gently pressed in the cavity
XAS measure	Fluorescence
Multimodal	Raman (UV-vis, IR,)

- especially for fluorescence
- Effect reduced by: •
 - Geometry of the cell (windows,...)
 - Presence of the sample •

La Fontaine et al., Cat. Today, 2013, 205, 148-158

Cell for high-pressure catalysis

Thermal catalysis Lytle-type cell

Temperature	Room temp. → 600°C
Pressure	1 → 50 bar
Sample	Powdered catalyst gently pressed in the cavity
XAS measure	Transmission
Multimodal	XRD

La Fontaine *et al., Cat. Today*, 2013, **205**, 148-158

In situ and Operando XAS characterization of Functional Materials | April 29, 2025 | A. Beauvois | 12

Cells for capillary

Thermal catalysis Capillary cell

« Four 1000 »

Gas blower

- Fluorescence possible
 - Coupling techniques possible
- Temperature control not optimal

- Temperature control more precise
- Fluorescence and other technique are difficult

Temperature	Room temp. → 1000°C
Pressure	1 → 20 bar
Sample	Powdered catalyst in a cap. between glass-wool
XAS measure	Transmission/fluorescence
Multimodal	XRD, Raman,

Cells for capillary

Thermal catalysis Capillary cell

« Four 1000 »

- Temperature control more precise
- Fluorescence and other technique are difficult

Temperature	Room temp. → 1000°C
Pressure	1 → 20 bar
Sample	Powdered catalyst in a cap. between glass-wool
XAS measure	Transmission/fluorescence
Multimodal	XRD, Raman,

Size and wall thickness of quartz capillaries?

- Wall thickness? → Depends mainly on the energy
- Size of cap. diameter? \rightarrow Depends on the energy and the catalyst composition

https://11bm.xray.aps.anl.gov/absorb/absorb.php

Compute X-ray Absorption. This tool is curre Select X-ray Wavelength or Energy: (click for details) Energy (keV) v 0.41	≊⊸? →
Chemical Formula: (click for details) enter using element chemical symbol and formula unit occupancy, e.g. YBa2Cu3O6.5 (t	xafsmass.exe
Sample Radius: (click for details) 0.40 capillary radius in mm	https://xafsmass.readthedocs.io/#
Sample Density or Packing Fraction (click for details) enter measured sample density or estimated packing fraction (often ~0.6) Packed Fraction (0.0 - 1.0)	
Compute Clear Form	

Sometimes, dilution is needed...

- Dilutant not too much absorbent
- Dilutant inert regarding the reaction of interest
- Take care of dilutant used if coupling techniques
- Dilution must be considered regarding the activity

Reactions

Ethanol Steam Reforming Dry Methane reforming Fischer Tropsch HDS & HDO $CO_2 - CO$ hydrogenation **Chemical Looping Combustion** Memory effect of LDH

1/ Heating to 400°c under air flow

(C)

2/ Adding NaCl solution at RT

Recovery of ~35 % of the starting LDH after adding NaCl solution

Cell for photocatalysis in gase phase

Photo-catalysis Gas-phase reaction

Multimodal

Not performed yet

Gas inlet

It is crucial to verify that the activity of the material in the *operando* cell is the same than at laboratory

Cell for photocatalysis in gase phase

Photo-catalysis Gas-phase reaction

Temperature	Room temp. → 80°C
Pressure	1 bar
Sample	Powdered catalyst gently pressed/pellet
XAS measure	Transmission/fluorescence
Multimodal	Not performed yet

Reactions

CO₂ photoconversion Ethanol photoconversion Formic Acid for H₂ production

Cell for (photo)-(electro)-catalysis in liquid phase

(Photo)-(electro)-catalysis Gas-phase reaction

VMP3 Bio-Logic multi-channel potentiostat

Temperature	Room temperature
Pressure	1 bar
Sample	Sample deposited on Carbon Paper
XAS measure	Fluorescence
Multimodal	Not performed yet

Cell for (photo)-(electro)-catalysis in liquid phase

In situ and Operando XAS characterization of Functional Materials | April 29, 2025 | A. Beauvois 19

I. Examples of *in situ/operando* setups

Catalysis (thermal catalysis, (photo)-(electro)-catalysis) Energy storage

Liquid cells

II. Multimodal characterisations and data analysis methodology

III. Scientific case: LDH used for Ethanol Stream Reforming

IV. Conclusions

An example of cell used for energy storage

Specific cell for cycling battery materials

Potentiostat to apply potential and measure current

- LiFePO

- Intermediates

- Li FePO

0.6 0.8 x in Li FePO

a)

2C charge

I. Examples of in situ/operando setups

Catalysis (thermal catalysis, (photo)-(electro)-catalysis) Energy storage Liquid cells

II. Multimodal characterisations and data analysis methodology

III. Scientific case: LDH used for Ethanol Stream Reforming

IV. Conclusions

Liquid cells

Liquid cells

Temperature	Room temperature → 180°C
Pressure	1 bar
Sample	Liquids (concentration to be optimized)
XAS measure	Fluorescence/Transmission
Multimodal	Raman, UV-visible,

Azeredo et al., PCCP, 2023, 25, 22523

- Several optical paths are possible 🗡
- Several types of windows are possible

Liquid cells

Liquid cells

Reactions

Nucleation growth of nanoparticles LDH formation Determination of species in solution

Formation of Co-Ru alloys

TODYS

Temperature	Room temperature → 180°C
Pressure	1 bar
Sample	Liquids (concentration to be optimized)
XAS measure	Fluorescence/Transmission
Multimodal	Raman, UV-visible,

Azeredo et al., PCCP, 2023, 25, 22523

- Several optical paths are possible X
- Several types of windows are possible

$\checkmark\,$ What is the application?

- Example: photocatalysis? → Example: quartz window
- ✓ Are their any other coupling methods?
 - Example: Raman? → Example: mica window
- ✓ What is the transmission of X-rays through the window material?
 - Use website/software for calculation, for instance https://henke.lbl.gov/optical_constants/

Engineering

X-Ray Interactions V

Tell us what else you wish this tool co

Introduction

Transmission of SiO₂

- Mo K-edge (20 keV) \rightarrow 1 mm possible
- Cu K-edge (~9 keV) \rightarrow 100 μ m better

- ✓ Is their any incompatibility between the material in which the cell is made and the material of interest?
 - Especially for fluorescence measurements
- ✓ Is the window for X-rays suitable for the working energy?
 - Material
 - Thickness
- ✓ Does the cell allow to perform the reaction in real conditions?
 - Temperature
 - Pressure
 - Measurement of the activity of the material
- ✓ Is the activity of the material in the cell similar to the one observed at the lab?
 - Need to perform test before the *operando* measurements
- Is the cell compatible with other characterization techniques?
 - Raman, XRD, UV-vis,...

I. Examples of in situ/operando cells

II. Multimodal characterisations and data analysis methodology

UV-visible coupling Raman coupling X-Ray Diffraction coupling

III. Scientific case: LDH used for Ethanol Stream Reforming

IV. Conclusions

What is needed for operando characterization using XAS?

real reaction conditions

Qualitative and Quantitative access to the material activity

Complementary Methods for simultaneous Characterization

Large dataset analysis methodology

Chemometrics for analysing large data set

Chemometrics for analysing large data set

to help the minimization Non-negativity of C and S

Closure relation on C

The sum of the concentration of each component for each spectra of the matrix must be 1

 $\sum_{i=1}^{n} c_i = 1$

Unimodality of concentration profile (optional)

Iteration is stopped when convergence is achieved

Raman coupling

In Situ

Raman probe

Determination of Mo species in solution

- HMA + Citric Acid (CA)
- [Mo]=[CA] = 2 mol L⁻¹
- ➢ pH_{init} = 0.58

 \succ

NaOH addition: 0.25 mL min⁻¹ (pH 0.58 → 7.5) 0.5 mL min⁻¹ (7.5 → 9.5)

Raman coupling

Determination of Mo species in solution

XRD coupling

In Situ

High entropy oxides formation upon heating

- Precursors:
 - Mechanical mixing of several oxides
- Heating to 900°C at P_{atm} using commercial Gas Blower
- *In situ* monitoring by alternating:
 - X-ray Absorption Spectroscopy
 - X-Ray Diffraction

I. Examples of in situ/operando cells

II. Multimodal characterisations and data analysis methodology

III. Scientific case: LDH used for Ethanol Stream Reforming

IV. Conclusions

Ethanol Stream Reforming using LDHs

Zero-emission hydrogen-powered train built by Alstom in France

Ni: cleavage of C-C and C-H Cu: ↓ the reduction (activation) temperature

Santos et al., J. Matter Chem. A. 2017, 5, 9998

Passos et al., Phys.Chem.Chem.Phys., 2020, **22**, 18835—18848 Briois et al., Chem. Cat. Chem., 2024, **16**, 1-14

500°C

R

Contents

I. Examples of *in situ/operando* cells

II. Multimodal characterisations and data analysis methodology

III. Scientific case: LDH used for Ethanol Stream Reforming

IV. Conclusions

✓ What is your study case?

- Catalysis? Thermal, photo, electro?
- Battery?
- Liquid reaction?
- ✓ What are the reaction conditions?
 - Temperature, pressure,...

✓ Do you want to perform coupling techniques?

• Raman, UV-visible, XRD,...

Choose/design the better in situ/operando cell

- Adapt the cell to your experiments (windows type, thickness, ...)
- Optimize the preparation of the material (thickness, dilution with *ad hoc* dilutant if needed,...)
- Test the cell before *in situ/operando* measurements to be sure that activity is the same as at the laboratory

CNPq

CARNOT

ESP

CIÊNCIA

Rocking Optics

Antonella ladecola (RS2E)

Thank you for your attention