

SESAME SUNSTONE Training Programme - First Edition

Apr 29, 2025

Operando XAFS measurements at the BM08-XAFS/XRF beamline

Messaoud Harfouche BM08-XAFS/XRF Beamline Senior Scientist

SESAME SUNSTONE Training Programme - First Edition

Apr 29, 2025

In-Situ XAFS measurements at the BM08-XAFS/XRF beamline

Messaoud Harfouche BM08-XAFS/XRF Beamline Senior Scientist

Synchrotron light sources around the World

Synchrotron radiation sources properties

Broad Spectrum which covers from microwaves to hard X-rays: the user can select the wavelength required for experiment;

High Flux: high intensity photon beam, allows rapid experiments or use of weakly scattering
crystals;Flux = Photons / (s • BW)

High Brilliance (Spectral Brightness): highly collimated photon beam generated by a small divergence and small size source (partial coherence);

Brilliance = Photons / (s • mm² • mrad² • BW)

High Stability: submicron source stability

Tunability: easy change of the wavelength (energy)

Polarisation: both linear and circular (with IDs)

Pulsed Time Structure: pulsed length down to tens of picoseconds allows the resolution of process on the same time scale

Synchrotron Radiation Facility

layout of atypical synchrotron

All beamlines get beam <u>simultaneously</u>

Brief History of SESAME

- 1980's: Noble Loreate Adbus Salam suggested a light source for the Middle East
- 1990's: Individuals and groups promote scientific cooperation between countries with conflicts in the Middle East
 - Middle East Scientific Cooperation (MESC) group, Sergio Fubini, Herwik Schopper, ...
- 1997: Gus Voss and Herman Wenick proposed to re-use Bessyl accelerator for the Middle East.

Brief History of SESAME

- > **2008:** Installation of the **Microtron**
- > 2009: first beam from the Microtron (low energy beam ~9 MeV) ... *Temporally shielding*
- > 2011: Full beam from the Microtron (22 MeV) after completion of the wall shielding
- > 2014: Start commissioning the **Booster**
- > **2016:** Commissioning of the 2.5 GeV storage ring
- ➢ 2017:
 - ✓ First beam in the storage ring
 - ✓ First **monochromatic** light in the XAFS/XRF beamline and first EXAFS spectrum
 - ✓ Inauguration (opening ceremony)
- > 2018: First SR-IR and first IR spectrum

SESAME Machine

Shielding wall and roof

3D drawing of the SESAME Building

Machine Parameters

Parameter	Unit	Value
Energy	GeV	2.5
Circumference	m	133.2
Current	mA	400
Beam Liftime	hr	21.5
Magnetic field (BM)	Т	1.45
Critical energy	eV	6049.4

SESAME machine was comparable to world class machines SOLEIL, France and SLS Switzerland

BM08-XAFS/XRF Beamline

Beamline Scientists: Messaoud Harfouche Latif Ullah Khan

Status: Operational since November 2017

Most of the optics components are donations (ROBL)

Brief History of the XAFS/XRF beamline

Task	Period
Conceptual Design Report	July 2012
Technical Design Report	October 2014
Installation (Pb Hutches, Optics)	March 2016
Control and alignment	2015-July 2017
Call for proposals (Sem-0)	March, 2017 (36 submitted, 19 accepted)
FE installation	April-September 2017
Start BL commissioning	October 2017
First Monochromatic beam	November 2017
First Scan	November 2017
End BL commissioning	July 2018 (only 3 months of operation)
First non-official User	April 2018
Official beamtime for Users	July 2018
Second call for proposals (Sem-1)	October 2018 (61 submitted, 36 accepted)

XAFS/XRF beamline optics

BM08-XAFS/XRF Beamline at SESAME (operational since 2018)

Design Parameters

Parameter	Unit	Value
Source (BM)	Т	1.45
Hor. acceptance	mrad	3
Vert. acceptance	mrad	0.6
Energy range	keV	4.7 – 30
Energy resolution	-	~ 10 ⁻⁴
Photon flux (S1)	Ph/sec	2x10 ¹² (8keV)
Beam size (S1)	mm ²	~0.1 x 0.1
Beam size (S2)	μm ²	8x10
Photon flux (S2)	Ph/sec	5x10° (8keV)

No focusing system → Use slits 2x2 mm² to 5 x 20 mm²

BM08-XAFS/XRF beamline optics

VCM: Vertical Collimating Mirror DCM: Double crystal Monochromator VFM : Vertical Focusing Mirror

WM: Wire Monitor M-Slt: Monochromatic Slits

BM08-XAFS/XRF Beamline (EH)

Experimental Station

6 Axis Motorized Positioning Stage (Optics Focus)

2 short ionization chambers
1 long IC for the I_{t2} (OKEN, Japan)

Experimental Station

A typical energy selective fluorescence spectrum:

Signal output	Low noise preamplifier (XIA DXP)	
Output connector (analog)	LEMO FFS.00.250	
Vacuum tightness	Optional; He leakage rate $<10^{-6}$ mbar \cdot l/s	
Number of channels	max. 8192	
Peaking time range	0.1 to 24 μ s in 24 steps	
Software parameters	Digital gain, threshold, peaking time etc.	
Signal form	Ramped reset type +1 V to -2 V; 5 mV/keV	
Digital interfaces	USB 2.0, RS232 (on request)	
Channel depth	24 bit	
ADC	14 bit	
Maximum read-out speed	1 ms (@1024 channels)	
Clock frequency	40 MHz	

Fluorescence Detector : 64 Silicon Drift Detectors

8 Modules x **8** SDDs with a Total collimated sensitive area of 499 mm²

- 1. Front-end PCBs
- 2. Conditioning PCBs
- 3. Brass profile with cooling liquid flowing inside
- 4. Insertion guides at flanks of detecting heads
- 5. Rails for eight detection heads
- 6. Power supply and filters
- 7. Back-end PCBs
- 8. Inlet cooling distribution
- 9. Outlet cooling distribution
- 10. Ethernet PCBs
- 11. Power supply connectors

Sample Environment (Shared between BLs)

Sample holders can be customized for special samples at SESAME's Mechanical Workshop

Sample Environment - Tubular Furnace/Reactor

Tubular Furnace/Reactor: A Sample Environment for In-Operando X-ray Absorption Studies (Catalysis)

Temperature (°C)	Sample Holder Ø mm	Atmospheres	Controller
Up to 800	8	Gases, Vapors and Vacuum	Programmable Logic Controller (PLC), SEASME

A: Inlet and outlet for water cooling B: Inlet and outlet for gases with Kapton windows C: Quartz glass tube

A: Thermocouple on the sample B: End sample holder

Collaboration: Dr. Santiago J. A. Figueroa QUATI Beamline

<u>**R-Fast scanning mode</u>**</u>

Relatively

PandABox

OtF: 10 min stp: 20 min

Almost NO difference between stp and OtF

Still Under Development

Prospective: X-ray Excited Optical Luminescence (XEOL)

X-ray Excited Optical Luminescence (XEOL) (λ: 200 - 920 nm)

Project Grant from IAEA

X-ray Excited Optical Luminescence (XEOL)

XAFS/XRF beamline: "Current Situation"

Si(111) & Si (311) Crystals

Beamline Characteristics

Energy range $4.7 - \sim 30 \text{ keV}$ Beam current 250 mA (decay mode) Beam Size 2x2 mm² to 5 x 20 mm²

Experimental Modes

☐ Transmission mode

 $\mu(\mathbf{E}) = \log \left(\left| \mathbf{I}_0 \right| / \mathbf{I}_1 \right)$

Fluorescence mode

 $\mu(\mathbf{E}) \sim \mathbf{I_f} / \mathbf{I_0}$

Re-filling of the deep core, generating a fluorescence, proportional to absorption

X-rays (light with wavelength 0.06- 12 Å or energy 1-200 keV) are absorbed by all matter through the photo-electric effect:

An X-ray is absorbed by an atom when the energy of the X-ray is transferred to a core level electron (K, L, or M shell) which is ejected from the atom. Any excess energy from the X-ray is given to the ejected photo-electron

FUNDAMENTALS OF XRF & XAFS TECHNIQUES: XAFS PRINCIPLE

x-ray photon energy

Electrons have a particle and wave nature. The photoelectron wave propagates away from the central atom (absorber), and it may scatter off neighboring atoms and finally return to its point of origin.

absorption coefficient

x-ray photon energy

The EXAFS signal χ(E)

The EXAFS signal is generally expressed as a function of the wave-vector of the photoelectron

We're interested in the energy dependent oscillations in $\mu(E)$, as these will tell us something about the neighboring atoms, **so we define the EXAFS as:**

E (eV)

$$\chi(E) = \frac{\mu(E) - \mu_0(E)}{\Delta \mu_0(E)}$$

- µ₀(E) Smooth function representing the bare atomic background
- Δµ₀ Edge step at the absorption edge normalized to one absorption event

Radial distribution of atoms around the photo-absorber (bond distance, number and type of neighbors)

- Oxidation state
- Coordination chemistry of the
 - absorbing atom
- Orbital occupancy

Application Domains

Environmental Science

Energy (classic & renewable)

Cultural heritage and archaeology

Geology & Geophysics

Medical and Pharmaceutical studies

Why using XAFS

- Higher sensitivity to local distortions
- Element selectivity
- > 1D radial distribution function (center at absorber)
- Charge state sensitivity (XANES)
- Investigation, with same degree of accuracy, of matter in
 - ✓ solid (crystalline or amorphous),
 - \checkmark liquid solution,
 - ✓ gaseous state
- Detection of very small distortions of local structure
- Short to medium range ordering
- Need synchrotron for measurements

Only few beamlines in each facility (XAFS/XRF @ SESAME)

Revealing the Role of Ruthenium on the Performance of P2-Type Na_{0.67}Mn_{1-x}Ru_xO₂ Cathodes for Na-Ion Full-Cells

Emine Altin, Iqra Moeez, Eunji Kwon, Ali Hussain Umar Bhatti, Seungho Yu, Kyung Yoon Chung, Muhammad Arshad, Messaoud Harfouche, Murat Buldu, Sebahat Altundag, Fatih Bulut, Sevda Sahinbay, Serdar Altin,* and Mehmet Nurullah Ates*

Herein, P2-type layered manganese and ruthenium oxide is synthesized as an outstanding intercalation cathode material for high-energy density Na-ion batteries (NIBs). P2-type sodium deficient transition metal oxide structure, $Na_{0.67}Mn_{1.x}Ru_{x}O_{2}$ cathodes where x varied between 0.05 and 0.5 are fabricated. The partially substituted main phase where x = 0.4 exhibits the best electrochemical performance with a discharge capacity of \approx 170 mAh g⁻¹. The in situ X-ray Absorption Spectroscopy (XAS) and time-resolved X-ray Diffraction (TR-XRD) measurements are performed to elucidate the neighborhood of the local structure and lattice parameters during cycling. X-ray photoelectron spectroscopy (XPS) revealed the oxygen-rich structure when Ru is introduced. Density of States (DOS) calculations revealed the Fermi-Level bandgap increases when Ru is doped, which enhances the electronic conductivity of the cathode. Furthermore, magnetization calculations revealed the presence of stronger Ru-O bonds and the stabilizing effect of Ru-doping on MnO6 octahedra. The results of Time-of-flight secondary-ion mass spectroscopy (TOF-SIMS) revealed that the Ru-doped sample has more sodium and oxygenated-based species on the surface, while the inner layers mainly contain Ru-O and Mn-O species. The full cell study demonstrated the outstanding capacity retention where the cell maintained 70% of its initial capacity at 1 C-rate after 500 cycles.

IF: 13

it is important to highlight the remarkable progress of Li-ion batteries (LIBs) in recent years.^[1] The demand for Li-ion batteries has surged, leading to an increase in the consumption of lithium sources.^[2] Newly developed electrode materials are expected to possess several key properties, including high energy density, long cycle life, and affordability for commercial feasibility.^[3] It is worth noting that LIBs, first introduced by Sony in the 1990s, have become one of the most extensively used battery systems for portable electronics and various other large-scale applications.^[4] Recently, there has been significant research into alternative battery types, such as lithium-sulfur (Li-S) and lithium-air (Li-air), to improve the energy density of the current state-ofthe-art lithium-ion batteries (LIBs).^[5] However, this progress has led to increased costs, primarily due to the limited and unevenly distributed lithium reserves around the globe.[6]

NIBs have appeared as a promising re-

modified version of CR2032 coin cell The cell allows X-ray penetration via the Kapton window.

Revealing the Role of Ruthenium on the Performance of P2-Type Na_{0.67}Mn_{1-x}Ru_xO₂ Cathodes for Na-Ion Full-Cells

Supercell crystal structure of P2-type

Revealing the Role of Ruthenium on the Performance of P2-Type Na_{0.67}Mn_{1-x}Ru_xO₂ Cathodes for Na-Ion Full-Cells

Enhancing Na-ion Battery Performance

XRD Ru-substituted cathode

- It is seen that the diffraction patterns are well matched by P2-type P63/mmc symmetry, typical Na-Mn-O cathode materials
- When the Ru content increased up to x = 0.5, an impurity phase of Na₂RuO₃ is observed (C2/c symmetry)
- The other samples were free of the impurity phase, suggesting that the degree of impurity was limited to only the sample where x = 0.5

The valence state of transition metals is influenced by the increasing amount of Ru in materials.
 The amount of Ru can affect the oxidation states of other transition metals.

Operando Structural Analysis (XRD)

- Special focus on the (002), (004), (100), and (114) peak shifts during the cycling.
- During the charging process, the solid solution mechanism is revealed by the noticeable shift of the (004) peak toward lower angles and the (100) peak toward higher angles
- An expansion along the 'c' axis and a reduction along the 'a' axis were observed.
- Lattice alterations occur during the removal of the sodium ions.

The strong peaks observed in the XRD data are due to the AI current collector.

As a result, a repulsive effect between the M-O layers takes place, <u>instigating</u> the expansion in the 'c' direction.

Operando Structural Analysis (XAFS)

- The XANES data was collected for the K-edge of Mn and Ru elements for the x = 0.4 Ru substitution cathode active material during cycling.
- Mn and Ru elements shifted toward higher energies during charging, indicating the oxidation of the Mn and Ru transition metals
 - XANES peaks were observed at : 6558.8 eV and 6561.2 eV (~2.4 eV shift)
- > Mn³⁺ ions transform to Mn⁴⁺ ions,
 - slightly lower oxidation state, during the charging process.

Operando Structural Analysis (XAFS)

The XANES peaks of Ru K-edge show peaks for OCV and 4.3 V at 22,132.8 and 22,134.4 eV, (~1.6 eV shift).

The XANES data for OCV corresponds to Ru⁴⁺, and the spectra of Ru K-edge gradually shifted to higher energies due to the oxidation of Ru ions from 4⁺ to 5⁺, as indicated in the literature

Operando Structural Analysis (XAFS)

Mn EXAFS data fitting reveals: the bond lengths of Mn-O, Mn– Mn, and Mn–Ru were found to be 1.94, 2.89, and 3.20 Å.

It is expected because the repulsive force of Mn-Mn is lower than that of Mn–Ru in the structure.

For the similar substituted elements in the form of P2-NaMn_{0.9}Fe_{0.1}O₂, bond lengths were increased 1.998 Å (Mn–O) and 2.905Å (Mn–TM) by Ru doping.

In contrast, the Ru-O bond length was not affected during charging/discharging process, providing a more stable structure.

Similar work but for Na_{0.67}Mn_{1-x}Fe_xO₂

In-situ XANES spectrum of (a) Mn and (b) Fe k-edge of the x=0.5 cathode, (c) peak values graphs depending on the voltage, in-situ XAFS mapping graphs of (d) Mn-k-edge and (e) Fe K-edges, artemis model analysis of (f) for Mn and (g) Fe K-edges and (h) EIS analysis of full cells of x=0.5 carbon battery

Tungsten Oxide Disproportionation Under Constant Voltage: XAFS study

Burak ULGUT

Bilkent University - Dept. of Chemistry (TURKEYE)

Acknowledgment:

INÖNÜ ÜNİVERSİTESİ

All SESAME Staff - Scientific

HZDR

ZENTRUM DRESDEN

HELMHOLTZ

ROSSENDORF

-XE -Co IAEA -Eq

-XEOL -Components -Equipments

International Atomic Energy Agency

Synchrotron-light for Experimental Science and Applications in the Middle East

Thank you For Your Attention

https://www.sesame.org.jo/beamlines/xafs-xrf

Messaoud.Harfouche@sesame.org.jo Latifullah.Khan@sesame.org.jo